C1sco SYSTEMS

Tcl IVR 2.0 Programming Guide

10S Version 12.3(2)T
Doc Version 12.3.2
7/21/2003

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number: R
Text Part Number: OL /’

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THISMANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “ASIS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO ORITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITSORLOSSORDAMAGE TODATA ARISING OUT OF THEUSE ORINABILITY TOUSE THISMANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCIP, the Cisco Powered Network mark, the Cisco Systems Verified logo, Cisco Unity, Follow Me Browsing, FormShare, Internet Quotient, iQ Breakthrough, iQ Expertise,
iQ FastTrack, theiQ Logo, iQ Net Readiness Scorecard, Networking Academy, ScriptShare, SMARTnet, TransPath, and Voice LAN are trademarks of Cisco Systems, Inc.;
Changing the Way We Work, Live, Play, and Learn, Discover All That's Possible, The Fastest Way to Increase Y our Internet Quotient, and iQuick Study are service marks
of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco 10S, the Cisco
10Slogo, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Empowering the Internet Generation, Enterprise/Solver, EtherChannel, EtherSwitch,
Fast Step, GigaStack, 10S, IP/TV, LightStream, MGX, MICA, the Networkers logo, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, RateMUX, Registrar,
SlideCast, StrataView Plus, Stratm, SwitchProbe, TeleRouter, and VCO are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other
countries.

All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (0203R)

Tcl IVR 2.0 Programming Guide
Copyright © 2003, Cisco Systems, Inc.
All rights reserved.

Preface ix
Reason for Change ix
Feature History ix
Audience xv
Structure of This Guide xvi
Related Documents xvi
Conventions xvii

Obtaining Documentation xviii
World Wide Web xviii
Documentation CD-ROM xwiii
Ordering Documentation xviii
Documentation Feedback xix

Obtaining Technical Assistance xix
Cisco.com xix
Technical Assistance Center xx

Overview 1-1
IVRand Tel 1-1

Tcl IVR APl Version 2.0 1-2
Prerequisites 1-2
Benefits 1-3
Features Supported 1-4
Developer Support 1-4

cHAPTER 1

Enhanced MultiLanguage Support ~ 1-4

VoiceXML and IVR Applications 1-5
Call Handoff in Tcl ~ 1-5
Call Handoff in VXML 1-6
Tcl/VXML Hybrid Applications 1-6
SendEvent Object 1-8

Tcl IVR Call Transfer Overview 1-8
Call Transfer Terminology ~ 1-8
Built-in Call Transfer Support ~ 1-9
Supported Tcl IVR Call Transfer Script
Call Transfer Scenarios 1-9

Cisco 10S Version 12.3(2)T

1-9

CONTENTS

| Doc Version12.3.2

Tcl IVR 2.0 Programming Guide

W Contents

Call Transfer Protocol Support 1-32

CHAPTER 2 Using Tcl IVR Scripts 2-1

How Tcl IVR Version 2.0 Works ~ 2-1

Writing an IVR Script Using Tcl Extensions ~ 2-3
Prompts in Tcl IVR Scripts ~ 2-3
Sample Tcl IVR Script ~ 2-4
Initialization and Setup of State Machine 2-8

Testing and Debugging Your Script ~ 2-8
Loading Your Script 2-9
Associating Your Script with an Inbound Dial Peer 2-10
Displaying Information About IVR Scripts ~ 2-10
Using URLs in IVR Scripts ~ 2-13
Tips for Using Your Tcl IVR Script ~ 2-14

CHAPTER 3 Tcl IVR API Command Reference 3-1
Standard Tcl Commands Used in Tcl IVR Scripts ~ 3-1
Tcl IVR Commands At a Glance 3-2

Tcl IVR Commands ~ 3-4
aaa accounting 3-4
aaa authenticate 3-5
aaa authorize 3-6
call close 3-8
clock 3-8
command terminate 3-11
connection create 3-11
connection destroy 3-12
fsm define 3-13
fsm setstate 3-13
handoff appl 3-14
handoff callappl 3-15
handoff return 3-16
infotag get 3-17
infotag set 3-18
leg alert 3-18
leg callerid 3-19
leg collectdigits 3-19
leg connect 3-21
leg consult abandon 3-22

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
“. Doc Version 12.3.2 |

Contents

leg consult response 3-23
leg consult request 3-23
leg disconnect 3-24
leg disconnect_prog_ind ~ 3-25
leg facility 3-26

leg proceeding 3-26
leg progress 3-27

leg setup 3-28

leg setup_continue 3-30
leg setupack 3-31

leg transferdone 3-32
leg vxmldialog 3-32
leg vxmlsend 3-34

log 3-34

media pause 3-36
media play 3-36
media record 3-38
media resume 3-40
media seek 3-41
mediastop 3-41
object create dial-peer 3-42
object create gtd ~ 3-43
object destroy 3-44
object append gtd ~ 3-44
object delete gtd ~ 3-45
object replace gtd ~ 3-46
object get gtd ~ 3-47
object get dial-peer 3-47
playtone 3-48

puts 3-50
requiredversion 3-51
setavsend 3-51

set callinfo 3-52
timer left 3-58

timer start 3-59

timer stop 3-60

cHapPTER 4 Information Tags 4-1
aaa_avpair 4-2
aaa_avpair_exists 4-2

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .“

W Contents

aaa_new_guid 4-3
cfg_avpair 4-3
cfg_avpair_exists 4-4
con_all 4-4

con_ofleg 4-4
evt_address_resolve_reject_reason 4-4
evt_address_resolve _term_cause 4-5
evt_connections 4-5
evt_consult_info 4-5
evt_dcdigits 4-5

evt digit 4-6
evt_digit_duration 4-6
evt_endpoint_addresses 4-6
evt_event 4-6

evt facility id 4-7

evt facility_report 4-7

evt feature_report 4-8

evt feature_type 4-8

evt gtd 4-9
evt_iscommand_done 4-9
evt_handoff_string 4-9

evt last_disconnect_cause 4-10
evt_last_event_handle 4-10
evt legs 4-11
evt_progress_indication 4-11
evt_redirect_info 4-12
evt_service_control 4-12
evt_service_control_count 4-13
evt_status 4-13
evt_transfer_info 4-13
evt_vxmlevent 4-14
evt_vxmlevent params 4-14
gtd_attr_exists 4-15
last_command_handle 4-15
leg_all 4-15

leg_ani 4-16

leg_ani_pi 4-16

leg_ani_si 4-17

leg_dn tag 4-17

leg_dnis 4-17

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
“. Doc Version 12.3.2 |

CHAPTER 5

Cisco I0S Version 12.3(2)T

leg_display_info 4-18
leg_guid 4-18
leg_incoming 4-18
leg_incoming_guid 4-18
leg_inconnection 4-19
leg_isdid 4-19
leg_outgoing 4-19
leg_password 4-20
leg_rdn_pi 4-20
leg_rdn_si 4-20
leg_redirect_cnt 4-21
leg_remoteipaddress 4-21
leg_rgn_noa 4-21
leg_rgn_npi 4-23
leg_rgn_num 4-23
leg_rgn_pi 4-24
leg_rgn_si 4-24
leg_settlement _time 4-25
leg_source_carrier_id 4-26
leg_suppress_outgoing_auto_acct
leg_type 4-27
leg_username 4-27
med_backup_server 4-28
med_language 4-28
med_language_map 4-29
med_location 4-29
med_total_languages 4-29
Sys_version 4-30

Events and Status Codes 5-1
Events 5-1
Status Codes 54

Authentication Status ~ 5-4
Authorization Status 5-4
Digit Collection Status 5-5
Consult Response 5-5
Consult Status ~ 5-5
Disconnect Cause 5-6
Facility 5-8

4-26

| Doc Version 12.3.2

Contents

Tcl IVR 2.0 Programming Guide

W Contents

Feature Type 5-8

Leg Setup Status 5-8

Media Status 5-10

Transfer Status ~ 5-10

VoiceXML Dialog Completion Status 5-11

GLOSSARY

Cisco I0S Version 12.3(2)T

Tcl IVR 2.0 Programming Guide
m. Doc Version 12.3.2 |

Preface

This document describes Version 2.0 of the Tool Command Language (Tcl) Interactive Voice Response
(IVR) Application Programming Interface (API). The Tcl IVR API can be used to create Tcl scripts that
control calls coming in to or going out of a Cisco gateway. This guide provides an annotated example
of aTcl IVR script and instructions for testing and loading a Tcl VR script.

Reason for Change
This section provides the reasons that this document was revised.
Section Description
Feature History Updated.
Chapter 1 Added section on Call Transfer.

Feature History

This section provides a cross-reference between additions made to this document and the applicable
Cisco |0S release.

Table 1 Feature History: Commands

Doc Version Cisco 10S Release Command

12.2.1 12.2(11)T leg vxmldialog
12.2.1 12.2(11)T leg vxmlsend

12.2.1 12.2(11)T command terminate
12.2.1 12.2(11)T aaa authentication
12.2.1 12.2(11)T aaa authorization
12.2.1 12.2(11)T aaa accounting
12.21 12.2(11)T clock

12.21 12.2(11)T media play

12.2.2 12.2(1)YT leg callerid

12.2.2 12.2(11)YT leg consult abandon
12.2.2 12.2(1)YT leg consult response

Cisco 10S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .“

Preface |

M Feature History

Table 1 Feature History: Commands (continued)

Doc Version Cisco 10S Release Command

12.2.2 12.2(10)YT leg consult request
12.2.2 12.2(11)YT leg tranferdone
12.2.3 12.2(15)T leg alert

12.2.3 12.2(15)T leg disconnect_progind
12.2.3 12.2(15)T leg setup_continue
12.2.3 12.2(15)T leg progress
12.2.3 12.2(15)T object create
12.2.3 12.2(15)T object destroy
12.2.3 12.2(15)T object append
12.2.3 12.2(15)T object delete
12.2.3 12.2(15)T object replace
12.2.3 12.2(15)T object get

12.2.3 12.2(15)T leg facility

12.2.3 12.2(15)T log

12.2.3 12.2(15)T media record
Table 2 Feature History: callinfo Parameters

Doc Version Cisco I0S Release callinfo Parameters
12.2.1 12.2(11)T guid

12.21 12.2(11)T incomingGuid
12.2.2 12.2(10)YT destinationNum
12.2.2 12.2(10)YT originationNum
12.2.2 12.2(11)YT accountNum
12.2.2 12.2(11)YT redirectNum
12.2.2 12.2(A)YT mode

12.2.2 12.2(1)YT reroutemode
12.2.2 12.2(11)YT transfer ConsultlD
12.2.2 12.2(11)YT notifyEvents
12.2.2 12.2(A0)YT originalDest
12.2.3 12.2(15)T retryCount

12.2.3 12.2(15)T inter ceptEvents
12.2.3 12.2(15)T notifyEvents
12.2.3 12.2(15)T previousCauseCode

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Preface

Feature History

Table 3 Feature History: Information Tags

Doc Version Cisco 10S Release Information Tag
12.2.1 12.2(11)T leg_rgn_noa
12.21 12.2(11)T leg_rgn_npi
12.21 12.2(11)T leg_rgn_pi
12.2.1 12.2(11)T leg_rgn_si
12.2.1 12.2(11)T leg_rgn_num
12.21 12.2(11)T leg_rni_ri
12.21 12.2(11)T leg_rni_orr
12.21 12.2(11)T leg_rni_rc
12.2.1 12.2(11)T leg_rni_rr
12.2.1 12.2(11)T leg_ocn_noa
12.21 12.2(10)T leg_ocn_npi
12.21 12.2(11)T leg_ocn_pi
12.2.1 12.2(11)T leg_ocn_num
12.2.1 12.2(11)T leg_chn_noa
12.21 12.2(11)T leg_chn_npi
12.21 12.2(11)T leg_chn_num
12.2.1 12.2(11)T leg_rnn_noa
12.21 12.2(11)T leg_rnn_inn
12.21 12.2(11)T leg_rnn_npi
12.21 12.2(11)T leg_rnn_num
12.21 12.2(11)T leg_rnr
12.21 12.2(11)T leg_cdi_nso
12.21 12.2(11)T leg_cdi_rr
12.21 12.2(11)T leg_gno_ni
12.2.1 12.2(11)T leg_cnn_noa
12.2.1 12.2(11)T leg_cnn_npi
12.21 12.2(11)T leg_cnn_pi
12.21 12.2(11)T leg_cnn_si
12.21 12.2(11)T leg_cnn_num
12.21 12.2(11)T leg_gea_type
12.21 12.2(11)T leg_gea noa
12.21 12.2(11)T leg_gea npi
12.21 12.2(11)T leg_gea_cni
12.2.1 12.2(11)T leg_gea_pi
12.2.1 12.2(11)T leg_gea si

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Preface |

M Feature History

Table 3 Feature History: Information Tags (continued)

Doc Version Cisco I0S Release Information Tag

12.2.1 12.2(11)T leg_gea num

12.2.1 12.2(11)T leg_cpc

12.2.1 12.2(11)T leg_oli

12.2.1 12.2(11)T leg_cid_ton

12.2.1 1221171 leg_cid_cid

12.2.1 12.2(11)T leg_tns ton

12.21 12.2(11)T leg_tns nip

12.21 12.2(11)T leg_tns cc

12.2.1 12.2(11)T leg_tns ns

12.2.1 12.2(11)T leg_pci_instr

12.21 12.2(11)T leg_pci_tri

12.2.1 12.2(11)T leg_pci_dat

12.2.1 12.2(11)T leg_fdc_parm

12.2.1 12.2(11)T leg_fdc_fname

12.21 12.2(11)T leg_fdc_instr

12.21 12.2(11)T leg fdc_dat

12.2.1 12.2(11)T ev_vxmlevent

12.2.1 12.2(11)T ev_vxmlevent_params
12.21 12.2(11)T ev_status

12.2.1 12.2(11)T ev_iscommand_done
12.2.1 1221171 ev_legs

12.2.1 12.2(11)T last_command_handle
12.21 12.2(11)T leg_guid

12.21 12.2(11)T leg_incoming_guid
12.2.1 12.2(11)T aaa_new_guid

12.2.2 12.2(1)YT evt_consult_info
12.2.2 12.2(1)YT evt_feature report
12.2.2 12.2(1)YT evt _feature type
12.2.2 12.2(1)YT evt_redirect_info
12.2.2 12.2(10)YT evt_transfer_info
12.2.2 12.2(11)YT leg_display_info
12.2.2 12.2(11)YT leg_dn_tag

12.2.3 12.2(15)T evt_gtd

12.2.3 12.2(15)T evt_endpoint_address
12.2.3 12.2(15)T evt_service control_count
12.2.3 12.2(15)T evt_service_control

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Preface

Feature History

Table 3 Feature History: Information Tags (continued)

Doc Version Cisco I0S Release Information Tag

12.2.3 12.2(15)T evt_address resolve reject_reason
12.2.3 12.2(15)T evt_address resolve term_cause
12.2.3 12.2(15)T evt_last_event_handle
12.2.3 12.2(15)T evt_facility_id

12.2.3 12.2(15)T evt_facility_report
12.2.3 12.2(15)T evt_gtd

12.2.3 12.2(15)T evt_progress indication
12.2.3 12.2(15)T evt_status

12.2.3 12.2(15)T gtd_attr_exists

12.3.1 12.3(100) leg_rni_ri (removed)
12.31 12.3(100) leg_rni_orr (removed)
12.3.1 12.3(100) leg_rni_rc (removed)
12.3.1 12.3(100) leg_rni_rr (removed)
12.3.1 12.3(100) leg_ocn_noa (removed)
12.31 12.3(100) leg_ocn_npi (removed)
12.31 12.3(100) leg_ocn_pi (removed)
12.3.1 12.3(100) leg_ocn_num (removed)
12.3.1 12.3(100) leg_chn_noa (removed)
12.3.1 12.3(100) leg_chn_npi (removed)
12.3.1 12.3(100) leg_chn_num (removed)
12.3.1 12.3(100) leg_rnn_noa (removed)
12.3.1 12.3(100) leg_rnn_inn (removed)
12.3.1 12.3(100) leg_rnn_npi (removed)
12.3.1 12.3(100) leg_rnn_num (removed)
12.3.1 12.3(100) leg_rnr (removed)
12.3.1 12.3(100) leg_cdi_nso (removed)
12.31 12.3(100) leg_cdi_rr (removed)
12.3.1 12.3(100) leg_gno_ni (removed)
12.3.1 12.3(100) leg_cnn_noa (removed)
12.3.1 12.3(100) leg_cnn_npi (removed)
12.3.1 12.3(100) leg_cnn_pi (removed)
12.31 12.3(100) leg_cnn_si (removed)
12.3.1 12.3(100) leg_cnn_num (removed)
12.3.1 12.3(100) leg_gea_type (removed)
12.31 12.3(100) leg_gea_noa (removed)
12.31 12.3(100) leg_gea_npi (removed)

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Preface |

M Feature History

Table 3 Feature History: Information Tags (continued)

Doc Version Cisco I0S Release Information Tag

12.3.1 12.3(100) leg_gea_cni (removed)
12.3.1 12.3(100) leg_gea_pi (removed)
12.31 12.3(100) leg _gea si (removed)
12.31 12.3(100) leg_gea_num (removed)
12.3.1 12.3(100) leg_cpc (removed)
12.3.1 12.3(100) leg_oli (removed)
12.31 12.3(100) leg_cid_ton (removed)
12.31 12.3(100) leg_cid_cid (removed)
12.3.1 12.3(100) leg_tns_ton (removed)
12.3.1 12.3(100) leg_tns nip (removed)
12.31 12.3(100) leg_tns cc (removed)
12.31 12.3(100) leg_tns ns (removed)
12.3.1 12.3(100) leg_pci_instr (removed)
12.3.1 12.3(100) leg_pci_tri (removed)
12.31 12.3(100) leg_pci_dat (removed)
12.31 12.3(100) leg_fdc_parm (removed)
12.3.1 12.3(100) leg_fdc_fname (removed)
12.3.1 12.3(100) leg_fdc_instr (removed)
12.31 12.3(100) leg fdc_dat (removed)
Table 4 Feature History: Events

Doc Version Cisco IOS Release Events

12.2.1 12.2(11)T ev_vxmldialog_done
12.21 12.2(11)T ev_vxmldialog_event
12.2.1 12.2(11)T leg_suppress_outgoing_auto_acct
12.2.2 12.2(10)YT ev_consult_request
12.2.2 12.2(1)YT ev_consult_response
12.2.2 12.2(11)YT ev_consultation_done
12.2.2 12.2(1)YT ev_transfer_request
12.2.2 12.2(10)YT ev_transfer_status
12.2.3 12.2(15)T ev_facility

12.2.3 12.2(15)T ev_disc _prog_ind
12.2.3 12.2(15)T ev_address resolved
12.2.3 12.2(15)T ev_alert

12.2.3 12.2(15)T ev_connected

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Preface

Audience W

Table 4 Feature History: Events (continued)

Doc Version Cisco 10S Release Events

12.2.3 12.2(15)T ev_proceeding
12.2.3 12.2(15)T ev_progress

Table 5 Feature History: Status Codes

Doc Version Cisco I0S Release Status Codes

12.2.1 12.2(11)T Is 016

12.2.1 12.2(11)T vd_xxx—VoiceXML Dialog Completion Status

12.2.2 12.2(1)YT cd_001 to cd_010

12.2.2 12.2(11)YT cr_000 to cr_004

12.2.2 12.2(11)YT cs_000to cs_005

12.2.2 12.2(10)YT ft_001 to ft_006

12.2.2 12.2(11)YT Is 026

12.2.2 12.2(11)YT Is 031tols 033

12.2.2 12.2(11)YT Is 040tols 042

12.2.2 12.2(1)YT Is 050tols 059

12.2.2 12.2(11)YT ts 000 to ts_009

12.2.3 12.2(15)T fa_000, fa_003, fa_007, fa_009, fa_010, fa_050
to fa_052

Audience

This document is a reference guide for developers writing voice application software for Cisco voice
interfaces, such as the Cisco AS5x00 series universal access servers. Voice application developers may
include:

» Independent software vendors (I1SVs)

- Corporate developers

» System integrators

» Origina equipment manufacturers (OEMSs)
This document presumes:

- Tcl programming knowledge and experience

Although examples of how to create and use Tcl I VR scripts are provided in this document, this
document is not intended to be atutorial on how to write Tcl scripts.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .“

Preface |

W Structure of This Guide

Structure of This Guide

This guide contains the following chapters and appendixes:

Chapter 1, “Overview,” provides an overview of Interactive Voice Response (IVR), the Tool
Command Language (Tcl), and version 2.0 of the Tcl 1VR Application Programming I nterface
(API).

Chapter 2, “Using Tcl IVR Scripts,” contains information on how to create and use Tcl VR scripts.

Chapter 3, “Tcl IVR APl Command Reference,” provides an alphabetical listing of the Tcl IVR API
commands.

Chapter 4, “Information Tags,” discusses identifiers that can be used to retrieve information about
call legs, events, the script itself, the current configuration, and values returned from RADIUS.

Chapter 5, “Events and Status Codes,” describes events received and status codes returned by Tcl
IVR scripts.

Glossary, presents an alphabetical listing of common terms used throughout this document.

Related Documents

Configuring Interactive Voice Response for Cisco Access Platforms:

http://www.cisco.com/univercd/cc/td/doc/product/access/acs _serv/asb400/sw_conf/ios_121/pull_i
vr.htm

Service Provider Features for Voice over |P;

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/voi p1203.
htm

Voice over |P for the Cisco AS5300:
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoi p/voi p5300/index.htm
\oice over |P for the Cisco AS5800:
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoi p/voi p5800/index.htm
\oice over |P for the Cisco 2600/Cisco 3600 Series:
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoi p/voip3600/index.htm
Configuring H.323 Vol P Gateway for Cisco Access Platforms:;

http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cger/multi_c/meprtl/medvo
ip.htm

Prepaid Distributed Calling Card via Packet Telephony:

http://www.cisco.com/univercd/cc/td/doc/product/access/acs _serv/as5400/sw_conf/ios_121/pull01
34.htm

RADIUS Vendor-Specific Attributes Implementation Guide:
http://cco/univercd/cc/td/doc/product/access/acs serv/vapp_dev/vsaig3.htm
Tcl IVR API Version 1.0 Programmer's Guide:
http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/tclivrpg.htm

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Preface

Conventions W

- Interactive Voice Response Version 2.0 on Cisco Vol P Gateways:
http://cco/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t3/dt_skyn.htm
« Enhanced Multilanguage Guide:

Enhanced Multi-Language Support for Cisco |OS Interactive Voice Response
» Cisco |OS Security Configuration Guide, Release 12.2:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm
» Cisco IO0STcl and VoiceXML Application Guide
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t11/ivrappli

ndex.htm

» Cisco VoiceXML Programmer’s Guide

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/index.htm

- Introduction to writing Tcl scripts:
Tcl and the TK Toolkit, by John Ousterhout (published by Addison Wesley Longman, Inc)

Conventions

This publication uses the following conventions to convey instructions and information.

Note

Convention

Description

boldface font

Commands and keywords.

italic font Variables for which you supply values.
[1] Keywords or arguments that appear within square brackets are optional.
{xly|z} A choice of required keywords appears in braces separated by vertical bars.

You must select one.

screen font

Examples of information displayed on the screen.

boldface screen font

Examples of information you must enter.

< >

Nonprinting characters, for example passwords, appear in angle bracketsin
contexts where italic font is not available.

Default responses to system prompts appear in square brackets.

Means reader take note. Notes contain helpful suggestions or references to additional information and

material.

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Preface |

M Obtaining Documentation

@

Timesaver This symbol means the described action saves time. You can save time by performing the action
described in the paragraph.

A

Caution This symbol means reader be careful. In this situation, you might do something that could result in
equipment damage or loss of data.

e

Tip This symbol means the following information will help you solve a problem. The tipsinformation might
not be troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Obtaining Documentation

The following sections provide sources for obtaining documentation from Cisco Systems.

World Wide Web

You can access the most current Cisco documentation on the World Wide Web at the following URL:
http://www.cisco.com
Translated documentation is available at the following URL.:

http://www.cisco.com/public/countries_languages.shtml

Documentation CD-ROM

Cisco documentation and additional literature are available in a Cisco Documentation CD-ROM
package, which is shipped with your product. The Documentation CD-ROM isupdated monthly and may
be more current than printed documentation. The CD-ROM package is available as a single unit or
through an annual subscription.

Ordering Documentation

Cisco documentation is available in the following ways:

» Registered Cisco Direct Customers can order Cisco Product documentation from the Networking
Products MarketPlace:

http://www.cisco.com/cgi-bin/order/order_root.pl

» Registered Cisco.com users can order the Documentation CD-ROM through the online Subscription
Store:

http://www.cisco.com/go/subscription

» Nonregistered Cisco.com users can order documentation through alocal account representative by
calling Cisco corporate headquarters (California, USA) at 408 526-7208 or, in North America, by
calling 800 553-NETS (6387).

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml
http://www.cisco.com/cgi-bin/order/order_root.pl
http://www.cisco.com/go/subscription

| Preface

Obtaining Technical Assistance

Documentation Feedback

If you are reading Cisco product documentation on Cisco.com, you can submit technical comments
electronically. Click the Fax or Email option under the “Leave Feedback” at the bottom of the Cisco
Documentation home page.

You can e-mail your comments to bug-doc@cisco.com.

To submit your comments by mail, use the response card behind the front cover of your document, or
write to the following address:

Cisco Systems

Attn: Document Resource Connection
170 West Tasman Drive

San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com as a starting point for all technical assistance. Customers and partners can
obtain documentation, troubleshooting tips, and sample configurations from online tools by using the
Cisco Technical Assistance Center (TAC) Web Site. Cisco.com registered users have complete access
to the technical support resources on the Cisco TAC Web Site.

Cisco.com

Cisco.com isthe foundation of a suite of interactive, networked services that provides immediate, open
access to Cisco information, networking solutions, services, programs, and resources at any time, from
anywhere in the world.

Cisco.com is a highly integrated Internet application and a powerful, easy-to-use tool that provides a
broad range of features and services to help you to

- Streamline business processes and improve productivity

» Resolve technical issues with online support

- Download and test software packages

» Order Cisco learning materials and merchandise

» Register for online skill assessment, training, and certification programs

You can self-register on Cisco.com to obtain customized information and service. To access Cisco.com,
go to the following URL.:

http://www.cisco.com

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

http://www.cisco.com

Preface |

M Obtaining Technical Assistance

Technical Assistance Center

The Cisco TAC is available to all customers who need technical assistance with a Cisco product,
technology, or solution. Two types of support are available through the Cisco TAC: the Cisco TAC
Web Site and the Cisco TAC Escalation Center.

Inquiries to Cisco TAC are categorized according to the urgency of the issue:

- Priority level 4 (P4)—You need information or assistance concerning Cisco product capabilities,
product installation, or basic product configuration.

- Priority level 3 (P3)—Your network performance is degraded. Network functionality is noticeably
impaired, but most business operations continue.

» Priority level 2 (P2)—Your production network is severely degraded, affecting significant aspects
of business operations. No workaround is available.

- Priority level 1 (P1)—Your production network isdown, and a critical impact to business operations
will occur if serviceis not restored quickly. No workaround is available.

Which Cisco TAC resource you choose is based on the priority of the problem and the conditions of
service contracts, when applicable.

Cisco TAC Web Site

The Cisco TAC Web Site allows you to resolve P3 and P4 issues yourself, saving both cost and time.
The site provides around-the-clock access to online tools, knowledge bases, and software. To access the
Cisco TAC Web Site, go to the following URL.:

http://www.cisco.com/tac

All customers, partners, and resellers who have a valid Cisco services contract have complete access to
the technical support resources on the Cisco TAC Web Site. The Cisco TAC Web Site requires a
Cisco.com login ID and password. If you have a valid service contract but do not have alogin ID or
password, go to the following URL to register:

http://www.cisco.com/register/

If you cannot resolve your technical issues by using the Cisco TAC Web Site, and you are a Cisco.com
registered user, you can open a case online by using the TAC Case Open tool at the following URL.:

http://www.cisco.com/tac/caseopen

If you have Internet access, it is recommended that you open P3 and P4 cases through the Cisco TAC
Web Site.

Cisco TAC Escalation Center

The Cisco TAC Escalation Center addresses issues that are classified as priority level 1 or priority
level 2; these classifications are assigned when severe network degradation significantly impacts

busi ness operations. When you contact the TAC Escalation Center with aP1 or P2 problem, a Cisco TAC
engineer will automatically open a case.

To obtain a directory of toll-free Cisco TAC telephone numbers for your country, go to the following
URL:

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
“. Doc Version 12.3.2 |

http://www.cisco.com
http://www.cisco.com/tac
http://www.cisco.com/register/
http://www.cisco.com/tac/caseopen
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

| Preface

Obtaining Technical Assistance

Before calling, please check with your network operations center to determine the level of Cisco support
services to which your company is entitled; for example, SMARTnet, SMARTnet Onsite, or Network
Supported Accounts (NSA). In addition, please have available your service agreement number and your
product serial number.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Preface |

M Obtaining Technical Assistance

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

CHAPTER 1

Overview

This chapter provides an overview of Interactive Voice Response (1VR), the Tool Command Language
(Tcl), and version 2.0 of the Tcl IVR Application Programming Interface (API). This section includes
the following topics:

e IVRand Tcl, page 1-1
e Tcl IVR API Version 2.0, page 1-2

— Prerequisites, page 1-2

— Bengfits, page 1-3

— Features Supported, page 1-4

— Developer Support, page 1-4
» Enhanced MultiLanguage Support, page 1-4
« VoiceXML and IVR Applications, page 1-5
e Tcl IVR Call Transfer Overview, page 1-8

IVR and Tcl

IVR isaterm used to describe systems that collect user input in response to recorded messages over
telephone lines. User input can take the form of spoken words or, more commonly, dual tone
multifrequency (DTMF) signaling.

For example, when a user makes a call with a debit card, an IVR application is used to prompt the caller
to enter a specific type of information, such as a PIN. After playing the voice prompt, the IVR
application collects the predetermined number of touch tones (digit collection), forwards the collected
digitsto a server for storage and retrieval, and then places the call to the destination phone or system.
Call records can be kept and a variety of accounting functions can be performed.

ThelVR application (or script) isavoice application designed to handle call s on a voice gateway, which
is arouter equipped with voice features and capabilities.

The prompts used in an VR script can be either static or dynamic:

» Satic promptsare audio filesreferenced by astatic URL. The name of the audio file and itslocation
are specified in the Tcl script.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter1 Overview |

W TclIVR API Version 2.0

Note

Dynamic prompts are formed by the underlying system assembling smaller audio prompts and
playing them out in sequence. The script uses an APl command with a notation form (see the media
play, page 3-36) to instruct the system what to play. The underlying system then assembles a
sequence of URLS, based on the language selected and audio file locations configured, and plays
them in sequence. This provides simple Text-to-Speech (TTS) operations.

For example, dynamic prompts are used to inform the caller of how much time isleft in their debit
account, such as:

“You have 15 minutes and 32 seconds of call time left in your account.”

The above prompt is created using eight individual prompt files. They are: youhave.au, 15.au,
minutes.au, and.au, 30.au, 2.au, seconds.au, and leftinyouraccount.au. These audio files are assembled
dynamically by the underlying system and played as a prompt based on the sel ected language and prompt
file locations.

The Cisco Interactive Voice Response (1VR) feature, available in Cisco |0S Release 12.0(6) T and
later, provides IV R capabilities using Tcl 1.0 scripts. These scripts are sighature locked, and can be
modified only by Cisco. The VR feature allows VR scriptsto be used during call processing. Cisco
| OS software to perform various call-related functions. Starting with Cisco |OS Release 12.1(3), ho
longer isany Tcl script lock in place, thus customers can create and change their own Tcl scripts.

Tcl isan interpreted scripting language. Because Tcl is an interpreted language, scripts written in
Tcl do not have to be compiled before they are executed. Tcl provides a fundamental command set,
which allows for standard functions such as flow control (if, then, else) and variable management.
By design, this command set can be expanded by adding extensions to the language to perform
specific operations.

Cisco has created a set of extensions, called Tcl IVR commands, that allows usersto create IVR
scripts using Tcl. Unlike other Tcl scripts, which are invoked from a shell, Tcl IVR scripts are
invoked when a call comes into the gateway.

The remainder of this document assumes that you are familiar with Tcl and how to create scripts
using Tcl. If you are not, we recommend that you read Tcl and the TK Toolkit by John Ousterhout
(published by Addison Wesley Longman, Inc).

Tcl IVR API Version 2.0

Prerequisites

This section describes the prerequisites, restrictions, benefits, features, and the devel oper support
program for this application programming interface.

In order to use the open Tcl 1VR feature, you need the following:

Cisco AS5300, AS5400, or AS5800 voice platform and universal gateway
Cisco |0S Release 12.1(3)T, or later
Tcl Version 7.1 or later

Calls can comeinto agateway using analog lines, ISDN lines, aVolP link, or a Voice over Frame Relay
(VoFR) link. Tcl IVR scripts can provide full functionality for callsreceived over analog or ISDN lines.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T

Doc Version 12.3.2 |

| Chapterl Overview

Note

Benefits

Cisco I0S Version 12.3(2)T

Tcl IVR API Version 2.0 Tl

The functionality provided for calls received over Vol P or VoFR links varies depending on the release
of Cisco |0S software being used. For example, if you are using Cisco 10S Release 12.0, you cannot
play prompts or tones, and you cannot collect tones.

Tcl IVR API Version 2.0 is a separate product from Tcl IVR API Version 1.0.

Tcl IVR API Version 2.0 has the following benefits:

The scripts are event-driven and the flow of the call is controlled by a Finite State Machine (FSM),
which is defined by the Tcl script.

Prompts can be played over VolIP call legs.
Digits can be collected over VoIP call legs.

Real-Time Streaming Protocol (RTSP)-based prompts are supported (depending on the release of
Cisco 10S software and the platform).

Scripts can control more than two legs simultaneously.
Call legs can be handed off between scripts.

All verbs are nonblocking, meaning that they can execute without causing the script to wait, which
allows the script to perform multiple tasks at once. See the following example code:

leg collect digits 1 calllnfo

leg collect digits 2 calllnfo

| eg setup 295786 setuplnfo $cal |l | D5

puts "\n This will be executed inmediately i.e. before the collect digits or call
setup is actually conplete"

In the preceding script example, digit collection isinitiated on legs 1 and 2 and a call setup process
is started using the calllD5 as the incoming leg. The script has issued each of the commands and
will later receive events regarding their completion. None of these commands ever requires that any
other command wait until it is finished processing.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Enhanced MultiLanguage Support

Features Supported

Tcl IVR API Version 2.0 commands provide access to the following facilities and features:
- Call handling (setup, conferencing, disconnect, and so forth)
- Mediaplayout and control (both memory-based and RT SP-based prompts)
» AAA authentication and authorization
» OSP settlements
- Call and leg timers
- Play tones
» Call handoff and return
« Digit collection
For more information, see Chapter 3, “Tcl IVR Commands”.

Developer Support

Developers using this guide may be interested in joining the Cisco Developer Support Program. This
new program has been developed to provide you with a consistent level of support that you can depend
on while leveraging Cisco interfaces in your development projects.

A signed Developer Support Agreement is required to participate in this program. For more details, and
access to this agreement, visit us at:
http://www.cisco.com/warp/public/779/servpro/programs/ecosystem/devsup, or contact

devel oper-support@cisco.com

Enhanced MultiLanguage Support

Note

Beginning with Cisco |0S Release 12.2(2)T, a new feature has been introduced into Tcl 1VR Version
2.0 that provides support for adding new languages and text-to-speech (TTS) notations to the core IVR
infrastructure of the Cisco |OS gateway.

In the past, if you wanted an IVR application to do text-to-speech, you were limited to English, Spanish,
and Chinese languages, and a fixed set of TTS notations. If an IVR application wanted to support more
languages, it needed to do its own translation and include the language translation procedures with every
Tcl IVR application that needed it.

With this new feature, you can make a new Tcl language module for any language and any set of TTS
notations. You can test and deliver the module, and the audio filesthat go with it, as alanguage package,
then document the language it delivers and the TTS notations it supports. When you configure this
module on the gateway, any |V R application running on that gateway and using those TTS notations
would work and speak that language.

For more information, refer to the Enhanced Multi-Language Support for Cisco 10S Interactive Voice
Response document.

Tcl language modules are not Tcl IVR scripts. They are pure Tcl scripts that implement a specific Tcl
language module interface (TLMI). As such, they must not use the Tcl IVR API extensions that are
available for writing IVR scripts.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

VoiceXML and IVR Applications [l

VoiceXML and IVR Applications

VoiceXML brings the advantages of web-based development and content to IV R applications. For more
discussion on using VoiceXML with I VR applications, see the Cisco |OSTcl and VoiceXML Application
Guide and the Cisco VoiceXML Programmer’s Guide.

Call Handoff in Tcl

Call handoff can best be understood when the concept of an application instance is first understood. In
the Cisco IOS VR infrastructure, an application instance is an entity that executes the application code
and receives, creates, and manages one or more call legsto form acall, or to deliver aservice to the user.
The application instance own and control these call legs and receives all events associated with them.

Although there can be exceptions, applications typically use asingle application instance to deliver the
services of asinglecall. Tcl I VR applications, when executing, act as one or more application instances.

Call Handoff is aterm used to describe the act of transferring complete control of a call leg from one
application instance to another. When handed off, all future events associated with that call leg will be
received and handled by the target application instance.

Handoff can happen in several different ways, depending on whether the call leg needs to return to the
source application instance of the handoff operation or not. A normal handoff application operation is
similar to a goto event, with no automatic memory of areturn address. The target cannot return the leg
back to the source instance.

The call app operation is similar to a function call. The application instance performing the call app
operation is saved on a stack and the target application instance can do a handoff return operation that
returns the call leg to application instance on the top of the stack.

When doing a handoff of acall leg, any legs that are conferenced to that call leg are also handed off,
even if they are not explicitly specified. When doing a handoff or a handoff return operation, an
application instance can pass parameters as argument strings. Call handoff can take place between any
combination of VoiceXML and Tcl IVR 2.0 applications.

The call handoff functionality allows a devel oper to write applications that may want to interact with
each other for various purposes. This may be to use or leverage functionality in existing applications or
to modularize alarger application into smaller application segments and use the handoff mechanism to
coordinate and communicate between them. There may be timeswhen the application devel oper need to
leverage the functionality and features of both VXML and Tcl IVR 2.0 in their applications. This may
also be another application of the handoff operation.

Though handoff operations provide a certain amount of flexibility in achieving modularity and
application interaction, they are limited when it comes to sharing control over acall leg. Only one
application instance is in total control of the call leg and will receive events, which can prove to be
limiting in certain scenarios. So, when considering a choice of mechanism for implementing applications
involving both Tcl IVR 2.0 and VXML, itisrecommended that devel opers al so consider hybrid scripting
as an alternative.

Hybrid applications differ from call handoff operations. Hybrid applications are written using Tcl IVR
scripts with VoiceXML dialogs either embedded or invoked in them. The Tcl IVR scripts are used for
call control and the VoiceXML script is used for dialog management and they all run as part of one
application instance allowing for a certain level of shared control of the call leg. Hybrid scripting is
discussed in more detail in alater section.

| Doc Version 12.3.2

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M VoiceXML and IVR Applications

Call Handoff in VXML

The call handoff functionality in Cisco VoiceX ML implementation is similar to the call handoff initiated
by the handoff appl and handoff callappl verbsin Tcl IVR 2.0. For a discussion of call handoff in
VoiceXML implementations, see the Cisco VoiceXML Programmer Guide.

Tcl/VXML Hybrid Applications

Tcl IVR 2.0 and VXML APIs each have their own strong points and some weak points. Tcl IVR 2.0is
very flexible when it comes to call control, able to describe multiple call legs, how they should be
controlled, and how they should interwork. A weak point, however, is when it comes to user interface
primitives being limited to leg collectdigits and media play commands.

VXML on the other hand is both familiar and easy to use to design voice user interfaces, but is very
limited inits call control capabilities. For example, VoiceXML dialog isgood at VR activities, such as
collecting user input or playing prompts.

It would be advantageous, therefore, to use Tcl IVR 2.0 to describe the call legs, and the call flow and
call control interactions between them, while using VXML to describe user interface dialogs on one or
more of the legsit is controlling.

Though it may be possible, to alimited extent, to use the handoff mechanism to have separate application
instancesin Tcl IVR 2.0 and use VXML to deal with the call control and dialog aspects of the
application, it's difficult to clearly partition, in time, the call control and dialog activities. This requires
that the call control script and the dialog execution share control over the call leg, which is difficult to
do in the handoff approach.

Cisco 10S Release 12.2(11)T introduces the ability for developers to use Tcl and VoiceXML scripts to
develop hybrid applications. Tcl IVR 2.0 extensions allow Tcl applications to leverage support for ASR
and TTS by invoking and managing VoiceXML dialogs from within Tcl 1VR scripts. Hybrid
applications can be developed using Tcl IVR for call control and VoiceXML for dialog management,
allowing applications to use both Tcl IVR 2.0 and VXML APIs, yet behave as a single application
instance.

Hybrid scripting requires that some control sharing and precedence rules be established. In hybrid
applications, the Tcl IVR 2.0 script isin control of the call and all of its call legs. It receives
ev_setup_indication eventsfor incoming call legs, and has the primitivesto issue aleg alert or to accept
the call leg through aleg connect command. It also has the primitives and event support to create
outgoing call legs, bridging one or more call legs together, or other similar operations.

When the Tcl VR script wants to communicate with the user on one of the call legs, it has two ways to
do this. It can use the existing leg collectdigits and media play commandsin native Tcl IVR 2.0 to play
individual audio prompts and collect digits, or it can use the leg vxmldialog command to initiate the
VXML dialog operation on the leg. The leg vxmldialog command starts up aV XML interpreter session
on the call leg under the direct control of the Tcl IVR 2.0 script. Theinitial VXML document that the
session starts up could either be embedded in the Tcl IVR 2.0 script invoking it or it can simply refer to
a VXML document on a web server.

This VXML session started on the leg isanormal VXML session for the most part, but with the
following exceptions:

- There are some synchronization primitives and mechanisms that have been added to allow
information exchange between the VXML dialog session and the Tcl IVR 2.0 call control script.

« VXML supportssome call control commands, such asthe <transfer> and <disconnect> tags, which
behave differently in this mode because the Tcl IVR 2.0 script should have complete control of all
call control activities.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

VoiceXML and IVR Applications [l

Communication Between VXML and Tcl IVR 2.0 in Hybrid Applications.

Whenthe Tcl IVR 2.0 script initiatesa VXML dialog on acall leg, it can pass an array of parametersto
the leg vxmldialog command. These parameters becomes accessible from within the VXML session
through the com.cisco.params.xxxxxx variables. Inthe VXML session, the com.cisco.params object gets
populated with ainformation from the Tcl IVR array, where xxxxx is the index of the Tcl array.

When the VXML dialog finishes, it can return some information back to the Tcl VR script through the
namelist attribute of the <exit/> tag. When the VXML dial og finishes executing, the Tcl script receives
theev_vxmidialog_done event, which can carry with it theinformation returned in the exit tag. The event
also carries with it a status code, which can be accessed through the evt_status information tag.

Apart from the start and end of a VXML dialog, the Tcl script can send an intermediate message to a
dialog in progress through the leg vxmlsend command. The event specified in the command is thrown
inside VXML interpreter and can be caught by a <catch> handler looking for that event. The command
can also have a Tcl parameter array, whose information is accessible inside the VXML catch handler
through a scoped _message.params.xxxxxx variable, similar to com.cisco.params.xxxx described above.

Similarly, the VXML interpreter environment or the executing document can send events to the Tcl
script at various points. These events arrive at the Tcl script as ev_vxmldialog_event events. An
executing VXML document can use an <object> extension with
classid="huiltin://com.cisco.ivrscript.sendevent” to send an explicit message, with associated parameter
information, to the parent Tcl script. If the VXML document executes certain tags, such as < disconnect>
or <transfer>, in the hybrid mode, that resultsin the Tcl script receiving an ev_vxmldialog_event event
implicitly.

An ev_vxmidialog_done event or ev_vxmldialog_event event can come with two pieces of information:

» A VXML-specific event name to differentiate the various reasons for the ev_vxmidialog_done or
ev_vxmldialog_event event, which is accessible through the evt_vxmlevent information tag. This
event name is a string in the form of vxml.*. This indicates that the event name could be from the
VXML interpreter environment (vxml.session.*) or from the dialog executing in the VXML
interpreter (vxml.dialog.*). Examples of environment-level messages are vxml.session.complete, to
indicate normal completion of adialog, or vxml.session.transfer, to indicate that the document tried
to execute a <transfer> tag, which is not supported in this mode of operation. If the document
throws a error.badfetch message which is not caught and this causes the dialog to complete, or if
the document uses the < object> send tag to send Tcl an explicit message, evt_vxmlevent will contain
avxml.dailog.* string.

» A parameter array of information that is accessible through the evt_vxmlevent_params information
tag.

Hybrid Mode and VXML Call Control Tags

In the hybrid mode, the VXML <disconnect> tag does not disconnect the call leg. Instead, a
vxml.session.disconnect event is sent to the Tcl IVR script. From a VXML execution perspective, a
<disconnect> is emulated, throwing a disconnect event and then continuing execution. The dialog will
not be able to play prompts or collect input from this point onwards.

When the user hangs up, a <disconnect> is again emul ated, as above. But theleg is not disconnected yet.
The Tcl script receives the ev_disconnected event as part of the control events, then has the
responsibility of either terminating, or waiting for the termination of the dialog, and then disconnecting
the leg.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

When the document executes a <transfer> tag, this results in the following:
» A vxml.session.transfer event is sent by the VXML environment to the Tcl script.

- The VXML environment will throw an error.unsupported.transfer event at the VXML session,
which can be caught. If not caught, the default handler causesthe termination of the dialog, resulting
in an eventual ev_vxmldialog_done event to the Tcl script.

SendEvent Object

Recorded objects are represented as audio object variablesin VXML/JAVA scripting. In Tcl, which is
totally text based, objects are represented as a ram://XXXXX URI. Tcl array elements that have a value
of ram://XXX are available as audio variables or objectsin VXML. A similar reverse transformation
happens when information is passed from VXML to the Tcl script.

Tcl IVR Call Transfer Overview

Tcl 1VR scripts can be used to provide blind- and consultation-transfer support for a variety of call
transfer protocols. This section provides some background information about call-transfer terminol ogy
and usage scenarios as related to Tcl VR applications. It also describes the call-transfer capabilities of
each supported protocol and how these protocols can be interworked when the endpointsinvolved in the
transfer use different signaling protocols.

Call Transfer Terminology

Transfer participants
A call transfer typically involves three participants:

» Transferor (XOR)—The endpoint that initiates the transfer.
- Transferee (XEE)—The endpoint that is transferred to different destination.
- Transfer target (XTO)—The endpoint that the transferee is transferred to.

Transfer Trigger

A call-transfer trigger is the mechanism a transferor endpoint uses to initiate a call-transfer procedure.
Thisis normally a hookflash event for analog phones, or a button or softkey on an I P phone registered
with the |OS voice gateway operating in Cisco Call Manager Express (CME) mode.

Transfer Commit

A transfer commit is the action a transferor endpoint takes when it wants to connect the transferee and
transfer target endpoints, possibly after consulting with the transfer target endpoint. For analog phones
and Cisco CME IP phones, the transfer commit is usually performed by hanging up the phone. When a
Tcl 1VR script receives a transfer-commit indication, it normally attempts to send a transfer request to
the transferee call leg.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Tcl IVR Call Transfer Overview

Built-in Call Transfer Support

Note

Call-transfer support has been added to the default voice session application beginning with Cisco 10S
Release 12.2(15)ZJ. Refer to Default Session Application Enhancements document for more
information about the call-transfer capabilities of the default session application.

The default session application provides support for transfer initiation from an | P phone registered with
an 10S gateway operating in Cisco Call Manager Express (CME) mode. The default session application
does not provide support for transfer initiation using an analog phone connected to the |0S gateway.

Supported Tcl IVR Call Transfer Script

Cisco provides an official Tcl VR script that supports the H.450 call transfer scenarios discussed in the
remainder of this section. This script is available in the Cisco Call Manager Express (CME) zip files
found at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-key. The current version of the script is named
app_h450_transfer.2.0.0.3.tcl. Refer to the README file associated with the script for more details.

Call Transfer Scenarios

There are many call transfer scenarios to consider when writing a Tcl IVR script. This subsection
describes several such scenariosinvolving one, two, or three Cisco |0S voice gateways. To illustrate the
call transfer scenarios, each description that follows includes the following diagrams:

» Thefirst diagram shows the two-party call before the transfer.

» The second diagram shows a blind call transfer in progress.

» Thethird diagram shows a consultation transfer in progress.

- Thefourth diagram shows the final call after a successful blind or consultation transfer.

Depending on the specific requirements, a script can be written to provide support for one or more of
the scenarios that follow. In some cases, such as the consultation transfer scenario shown in Figure 1-7,
two independent instances of the script may be active on the same gateway.

In the figures that follow, the labels XOR, XEE, and XTO designate the role each call leg playsin the
call transfer. The IN and OUT labels track the incoming and outgoing call legs during a two-party call.
This allows a script to keep track of the call leg topology and determine what action to take when an
event is received.

In all scenarios described here, the original two-party call between phone A and phone B is already
established. Phone A is the transferor endpoint (XOR), phone B is the transferee endpoint (XEE), and
phone C isthe transfer target endpoint (XTO). Transferor phone A is either an analog FXS phone or an
IP phone registered with the | OS voice gateway operating in Cisco Call Manager Express (CME) mode.

One Gateway Scenario with Analog Transferor

Thefirst call transfer scenario is one in which phones A, B, and C are connected to the same gateway,
as shown in Figure 1-1. In this case, al transferor, transferee, and transfer-target functionality is
provided by a single instance of the Tcl 1VR script.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Figure 1-1 Single GW: Analog XOR before transfer
Gateway 1

Pr_lone_ B

TCL IVR script
In

~
o
o
Te)
o

Toinitiate a blind transfer, the anal og phone user presses hookflash, enters the transfer destination, and
then hangs up. The script then places aregular call to the transfer target, connects the transferee and

transfer-target call legs, then disconnects the transferor call leg. See Figure 1-2.

Figure 1-2 Single GW: Analog XOR blind transfer
Gateway 1

Pﬁone_ B

TCL IVR script

XOR setup request

95858

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapterl Overview

Tcl IVR Call Transfer Overview

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). Since phone C is alocal analog phone, the gateway generates a local
consultation ID and registersit to this script instance. The script then places the outbound transfer call
to phone C that includes this consultation ID. Since the consultation ID is registered to this script
instance, the transferee call leg is handed off to this same script. See Figure 1-3.

Figure 1-3 Single GW: Analog XOR consultation transfer
Gateway 1

Setup request
Consult request
\

‘ Consult response
— XQR \ﬁ[’

Phone A X\\\> =
XTO

TCL IVR script

Handoff
(to itself)

95859

When the script receives the handoff event, it bridges the transferee and transfer-target |egs and rel eases
the transferor. See Figure 1-4.

N

Note Inthissi ngle gateway scenario, it would be possible to simplify the call flow and avoid having the script
hand off the transferee call leg to itself; however, using the handoff mechanism isthe preferred approach
as it also works in the multi-gateway scenarios described below.

Figure 1-4 Single GW: Analog XOR after transfer
Gateway 1

TCL IVR script

////////'C)Ut
In

95860

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

One Gateway Scenario with Cisco CME IP Phone Transferor

In this transfer scenario, phones A, B, and C are all connected to the same gateway. See Figure 1-5. In
this case the transferor, transferee, and transfer-target functionality is provided by one or two instances
of the Tcl IVR script.

Figure 1-5 Single GW: Cisco CME IP Phone XOR before transfer
Gateway 1

TCL IVR script

— In

Pﬁone_C

95861

To initiate a blind transfer, the | P phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone, places aregular call to
the transfer target, and connects the transferee and transfer target call legs. It then disconnects the
transferor call leg. See Figure 1-6.

Figure 1-6 Single GW: Cisco CME IP Phone XOR blind transfer
Gateway 1

TCL IVR script

' & |IP
P 1 XOR Set_up re‘quest
Phone A Toabart o
Transfer request
o Phone C

XEE
Pﬁone- B

95862

To initiate a consultation transfer, the |P phone user presses the transfer button on the phone and enters
the transfer-destination number. The |P phone uses a separate line to place a call to the transfer target.
This call isindependently handled by a second instance of the Tcl VR script running on the gateway,
which treats the call as a normal two-party call, unaware it is a consultation call.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Cisco I0S Version 12.3(2)T

Tcl IVR Call Transfer Overview

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. Since phone C is alocal analog phone,
the gateway generatesalocal consultation ID and registersit to this script instance. The script then sends
a consultation response to | P phone A that includes this consultation ID. Next, the first script instance

receives atransfer request from IP phone A that includes the consultation ID it received from the second
script instance. See Figure 1-7.

Figure 1-7 Single GW: Cisco CME IP Phone XOR consultation transfer

Gateway 1
Setup request
Consult request \/>
Consult response \/\> Script 2
\\ p

Phone A

XOR —>»\ Consult request

<T— Consult response

Handoff

Transfer request

Script 1
XOR XTO
o i XEE
I
Phone B 9

This script instance then places the outbound transfer call to phone C that includes the consultation ID.
Since the consultation ID is registered to the second script instance, the transferee call leg is handed off
to the second script instance. The second script instance receives the handoff event and bridges the

transferee and transfer-target legs. The first script instance releases the transferor call leg. See
Figure 1-8.

Figure 1-8

Single GW: Cisco CME IP Phone XOR after transfer
Gateway 1

TCL IVR script

Out
Phone C
—'..-‘ | one
— :
Phone B

95864

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Two Gateway Scenarios with Analog Transferor

There are several call transfer scenarios that involve two 10S gateways and an anal og transferor. Several
of these are described in the following subsections.

XOR and XTO on Gateway 1 and XEE on Gateway 2

In the first scenario, the transferor (phone A) and transfer-target (phone C) endpoints are connected to
Gateway 1. The transferee endpoint (phone B) is connected to Gateway 2. See Figure 1-9.

Figure 1-9 Two gateways (XOR/XTO & XEE): Analog XOR before transfer
Gateway 1 Gateway 2

TCL IVR script
Out

TCL IVR script

In \\\\\\\\\
Out

In

H.323 or
SIP

Pﬁone_ C

To initiate ablind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
isreceived by the script handling the call between phone A and phone B on Gateway 2. This script places

an outbound call to phone C and disconnects its transferor call leg when the call setup succeeds. See
Figure 1-10.

Although phone C is also connected to Gateway 1, theincoming call from phone B to phone C is handled
by a separate instance of the Tcl VR script. This script simply places a normal call to phone C, without
knowledge that this call was part of a call transfer.

Figure 1-10 Two gateways (XOR/XTO & XEE): Analog XOR blind transfer
Gateway 1 Gateway 2

Script 1

XOR XEE
H.323 or
Phone A SIP

Transfer request /' | TcL VR script
_

XOR

Script 2 Phone B
o p HSéZIg or
| Out In
Phone C B —

Setup request

95866

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Cisco I0S Version 12.3(2)T

Tcl IVR Call Transfer Overview

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). Since phone C is alocal analog phone, the gateway generates a local
consultation ID and registersit to this script instance. The script then sends a SIP or H.450 transfer
request to phone B that includes the consultation ID. The transfer request is received by the script
handling the call on Gateway 2. This script places an outbound call to phone C and disconnects its
transferor call leg when the call setup succeeds. See Figure 1-11.

Figure 1-11 Two gateways (XOR/XTO & XEE): Analog XOR consult transfer

Gateway 1 Gateway 2

TCL IR script | \ 'ransfer reque’st TCL IR script

‘L XOR XEE XOR

‘ a

— H.323 or
Phone A Cpnsult Consult SIP

request m—

J— a response H.323 or Phone B
g = XTO XEEb SIP
Phone C B J—

Setup request

95867

The setup request includes the consultation ID received in the transfer request. Unlike the blind transfer
case above, the incoming setup request to phone C is handled by the same instance of the script that is
handling the original call between phones A and B, and the consultation call between phones A and C.
This script connects the incoming call to phone C and disconnects phone A. See Figure 1-12.

Figure 1-12 Two gateways (XOR/XTO & XEE): Analog XOR after transfer

Gateway 1 Gateway 2
TCL IR script TCL IVR script
H.323 or
SIP

Out In

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

XOR and XEE on Gateway 1 and XTO on Gateway 2

In this scenario, the transferor (phone A) and transferee (phone B) are connected to Gateway 1. The
transfer target (phone C) is connected to Gateway 2. See Figure 1-13.

Figure 1-13 Two gateways (XOR/XEE & XTO): Analog XOR before transfer

Gateway 1

TCL IVR script

In

H.323 or

SIP

Gateway 2

(o2}
©
e}
Yol
(=2}

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, and
then hangs up. The script places a call to phone C by sending a SIP or H.323 setup request to Gateway
2. The script that handles this setup request on Gateway 2 places anormal call to phone C, unaware that
this call was part of a call transfer. After a successful call setup, the script on Gateway 1 bridges phone
B and phone C and releases the call from phone A. See Figure 1-14.

Figure 1-14 Two gateways (XOR/XEE & XTO): Analog XOR blind transfer
Gateway 2

Gateway 1

TCL IVR script
XOR

Setup request
_—>

H.323 or
SIP

TCL IVR script

In Out

Pﬁone_ C

95870

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer

destination number. The script then places acall to the transfer target so that phone A is ableto consult
with phone C. When the user commits the transfer (by hanging up), the script requests a consultation 1D
from the transfer target (phone C).

For H.450 transfers, Gateway 1 sends an H.450 consultation request message to phone C. This request
is received by the script instance on Gateway 2 that is handling the call between phones A and C. This

script sends a consultation response that includes a consultation ID. See Figure 1-15.

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapterl Overview

Tcl IVR Call Transfer Overview

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 setup request to Gateway 2 that includes this consultation ID. When the setup request
arrives at Gateway 2, it is delivered to the same script instance that is handling the consultation call
between phone A and phone C.

Figure 1-15 Two gateways (XOR/XEE & XTO): Analog XOR consultation transfer
Gateway 1 Setup request Gateway 2

Consult request

R

TCL IVR script
XOR XTOa

Consult response/ | TcL VR script
<«

XOR \
XTO

XEE

H.323 or
SIP

H.323 or
SIP

_—>
Setup request

95871

This script connects the incoming call to phone C and disconnects the consultation call from phone A.
See Figure 1-16.

Figure 1-16 Two gateways (XOR/XEE & XTO): Analog XOR after transfer
Gateway 1 Gateway 2

TCL IVR script

Out
m /
| In

Pﬁone- B

TCL IVR script

In Out

H.323 or
SIP

N
~
[oo]
n
(o)

XOR on Gateway 1 and XEE and XTO on Gateway 2

The third call transfer scenario involving two gateways is shown in Figure 1-17. The transferor (phone
A) is connected to Gateway 1, and the transferee (phone B) and transfer target (phone C) are connected
to Gateway 2.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Figure 1-17 Two gateways (XOR & XEE/XTO): Analog XOR before transfer
Gateway 1 Gateway 2

TCL IVR script TCL IVR script

/Out
In

In Out
H.323 or

SIP

Toinitiate ablind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. Thetransfer request
isreceived by the script handling the call between phone A and phone B on Gateway 2. This script places
an outbound call to phone C. When the setup succeeds, this script connects phone B to phone C and
disconnects the call from phone A. See Figure 1-18.

Figure 1-18 Two gateways (XOR & XEE/XTO): Analog XOR blind transfer
Gateway 1 Gateway 2

Transfer request
_—

TCL IVR script TCL IVR script

XEE

H.323 or
SIP

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. Theincoming call from phone A is handled by a different script instance on Gateway 2 thanis
handling the call between phones A and B. See Figure 1-19.

When the user commits the transfer (by hanging up), the script on Gateway 1 requests a consultation 1D
from the transfer target. For H.450 transfers, Gateway 1 sends an H.450 consultation request message to
phone C. The request is received by the script instance on Gateway 2 that is handling the call between
phones A and C. This script sends a consultation response that includes a consultation ID.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 transfer request to Gateway 2 that includes this consultation ID.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Cisco I0S Version 12.3(2)T

Tcl IVR Call Transfer Overview

Figure 1-19 Two gateways (XOR & XEE/XTO): Analog XOR consultation transfer

Gateway 1 Gateway 2

TCL IVR script | \ Transfer request Script 1
XEE XOR XOR
o HSSZIg or XTO
— XOR ‘
Phone A H.323 or XEE
XTO SIP XOR —— XTO
Setup request Script 2
R

Consult request
_—

Consult response
<«

The transfer request is received by the script instance handling the call between phones A and B on
Gateway 2. This script places acall to phone C. The setup request includes the consultation 1D received
in the transfer request. Since the consultation ID included in the setup request matches the one sent to
Gateway 1 in the consultation response, the call setup completes by handing off the incoming call to the
second script instance. After the handoff, the original call from phone A to phone B is disconnected by
the first script instance on Gateway 2 and the consultation call from phone A is disconnected by the
second script instance. See Figure 1-20.

Figure 1-20 Two gateways (XOR & XEE/XTO): Analog XOR after transfer
Gateway 2

Gateway 1

TCL IVR script

XEE
H.323 or

SIP

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Two Gateway Scenarios with Cisco CME IP Phone Transferor
There are several call transfer scenarios that involve two |OS gateways and a Cisco Call Manager
Express (CME) | P phone transferor. Several of these are described in the following subsections.
XOR and XTO on Gateway 1 and XEE on Gateway 2

Thefirst scenario is shown in Figure 1-21. Here, the transferor (phone A) and transfer-target (phone C)
endpoints are connected to Gateway 1. The transferee endpoint (phone B) is connected to Gateway 2.

Figure 1-21 Two gateways (XOR/XTO & XEE): Cisco CME IP phone XOR before transfer
Gateway 1 Gateway 2

TCL IVR script

In \
Out

TCL IVR script
Out

In
H.323 or

Phone A SIP

95877

To initiate a blind transfer, the | P phone user presses the transfer button on the phone and enters the
transfer destination. The script receives atransfer-request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call between
phone A and phone B on Gateway 2. This script places an outbound call to phone C and disconnects its
transferor call leg when the call setup succeeds. Although phone C is also connected to Gateway 1, the
incoming call from phone B to phone C is handled by a separate instance of the Tcl IVR script. This
script simply places anormal call to phone C without knowledge that this call was part of acall transfer.

See Figure 1-22.

Figure 1-22 Two gateways (XOR/XTO & XEE): Cisco CME IP phone XOR blind transfer
Gateway 1 Gateway 2

Transfer request———
—————* > Scriptl Transfer request /| TCL IVR script
IP XOR XEE XOR
— H.323 or
Phone A SIP =
o Script 2 H.323 or Phone B
‘—1 " SIP
Phone C B S—

Setup request

95878

Cisco I0S Version 12.3(2)T

Tcl IVR 2.0 Programming Guide
m. Doc Version 12.3.2 |

| Chapterl Overview

Cisco I0S Version 12.3(2)T

Tcl IVR Call Transfer Overview

To initiate a consultation transfer, the |P phone user presses the transfer button on the phone and enters
the transfer destination number. The I P phone uses a separate line to place a call to the transfer target.
This call isindependently handled by a second instance of the Tcl 1VR script running on Gateway 1. The
script instance treats the call as a normal two-party call, unaware that it’s a consultation call. See
Figure 1-23.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. Since phone C is alocal analog phone,
the gateway generatesalocal consultation ID and registersit to this script instance. The script then sends
a consultation response to | P phone A that includes this consultation ID.

Next, the first script instance receives a transfer request from I P phone A that includes the consultation
ID it received from the second script instance. This script instance then sends a SIP or H.450 transfer
request to phone B that includes the consultation ID. The transfer request is received by the script
handling the call between phone A and phone B on Gateway 2. This script places an outbound call to
phone C and disconnectsits transferor call leg when the call setup succeeds. The setup request includes
the consultation 1D received in the transfer request.

Figure 1-23 Two gateways (XOR/XTO & XEE): Cisco CME IP phone XOR consult transfer

Gateway 1 Gateway 2

Transfer
reques_t> Script 1 Transfer request /' | TcL VR script
, _—>
XOR XEE XOR
L H.323 or
\’ Setup request
Phone A \\TConsuIt request SIP
Consult Script 2 H.323 or Phone B
response XOR S|
XEE
XTO

Setup request

95879

The incoming setup request is delivered to the script instance on Gateway 1 that is handling the
consultation call between phone A and phone C. This script connects the incoming call to phone C and
releases the call from phone A. See Figure 1-24.

Figure 1-24 Two gateways (XOR/XTO & XEE): Cisco CME IP phone XOR after transfer
Gateway 2

Gateway 1

TCL IR script

TCL IVR script

H.323 or
SIP

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

XOR and XEE on Gateway 1 and XTO on Gateway 2

The second scenario involving two gateways and an | P phone transferor. The transferor (phone A) and

transferee (phone B) are connected to Gateway 1. The transfer target (phone C) is connected to Gateway
2. See Figure 1-25.

Figure 1-25 Two gateways (XOR/XEE & XTO): Cisco CME IP phone XOR before transfer
Gateway 1 Gateway 2

TCL IVR script

In
H.323 or

SIP

—
«©
Q
Yo}
o

To initiate a blind transfer, the | P phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone A and places acall to
phone C by sending a SIP or H.323 setup request to Gateway 2. The script that handles this setup request
on Gateway 2 places anormal call to phone C, unaware that this call was part of a call transfer. After a

successful call setup, the script on Gateway 1 bridges phone B and phone C and releases the call from
phone A. See Figure 1-26.

Figure 1-26 Two gateways (XOR/XEE & XTO): Cisco CME IP phone XOR blind transfer
Gateway 1 Gateway 2

Setup request
_—

Setup request(TCL IVR script TCL IVR script
Y) |

XOR H.eézlg or

Phone A

N
o]
Q
Yol
[}

To initiate a consultation transfer, the | P phone user presses the transfer button on the phone and enters
the transfer destination number. The | P phone uses a separate line to place a call to the transfer target.
Thiscall isindependently handled by a second instance of the Tcl I VR script running on Gateway 1. The
script instance treats this as a normal two-party call and is not aware it is a consultation call.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Note

Cisco I0S Version 12.3(2)T

Tcl IVR Call Transfer Overview

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from 1P phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 2 handling the call between phones A and C. This
script sends a consultation response that includes a consultation ID. See Figure 1-27.

For SIP, the consultation request isnot relayed to phone C. Instead, a consultation ID isgenerated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it relays
it to IP phone A. In addition, due to the internal consultation ID management scheme in the |OS

application framework, the consultation 1D received from Gateway 2 is registered to this script instance
(the second instance).

Because the script instance on Gateway 2 sent a consultation responseto Gateway 1, it expectsto receive
an incoming call from the transferee. Since the transfer was handled locally on Gateway 1 through a
handoff, Gateway 2 will not receive thisincoming call. A guard timer in 10S eventually expires, and the
script continues processing the call between Phone A and phone C as a normal two-party call.

Next, the first script instance receives a transfer request from | P phone A that includes the consultation

ID from the second script instance. This script instance places the outbound call to phone C that includes
the consultation ID.

Figure 1-27 Two gateways (XOR/XEE & XTO): Cisco CME IP phone XOR consultation transfer
Gateway 1

Gateway 2

Setup request
_

Setup request

Consult request s;

Consult request
_—>

Consult response / > Script 2
onsult response i
I‘ ‘ | = p TCL IVR script
XOR XTO XOR\
—— XEE
Phone A \ XTO

Jransfer request Handoff
Script 1 |

XOR XTO

XEE

Pr_lone_ B

Since the consultation ID is registered to the second script instance, the transferee call leg is handed off
to the second script instance. This script instance receives the handoff event and bridges the transferee
and transfer target legs. The first script instance releases the transferor call leg. See Figure 1-28.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Figure 1-28 Two gateways (XOR/XEE & XTO): Cisco CME IP phone XOR after transfer
Gateway 1 Gateway 2

TCL IVR script

TCL IVR script

/ In
Out

H.323 or

SIP
Out In

Pﬁone_ B

95884

XOR on Gateway 1 and XEE and XTO on Gateway 2

The third call transfer scenario involving two gateways and an IP phone transferor is shown in
Figure 1-29. The transferor (phone A) is connected to Gateway 1, and the transferee (phone B) and

transfer target (phone C) are connected to Gateway 2.

Figure 1-29 Two gateways (XOR & XEE/XTO): Cisco CME IP phone XOR before transfer
Gateway 1 Gateway 2

TCL IVR script

/Out
In

TCL IVR script

In Out
H.323 or

Phone A SIP

To initiate a blind transfer, the | P phone user presses the transfer button on the phone and enters the
transfer destination. The script receives atransfer request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call between
phone A and phone B on Gateway 2. This script places an outbound call to phone C. After a successful
call setup, the script on Gateway 2 bridges phone B and phone C and rel eases the call from phone A. See

Figure 1-30.

Cisco I0S Version 12.3(2)T

Tcl IVR 2.0 Programming Guide
m. Doc Version 12.3.2 |

| Chapter1

Overview

Cisco I0S Version 12.3(2)T

Tcl IVR Call Transfer Overview

Figure 1-30 Two gateways (XOR & XEE/XTO): Cisco CME IP phone XOR blind transfer

Gateway 1 Gateway 2

TCL IVR script
XEE

TCL IVR script
Transfer request
—_—>

Transfer request
i

XOR XEE

H.323 or
SIP

>

Phone

To initiate a consultation transfer, the |P phone user presses the transfer button on the phone and enters
the transfer destination number. The | P phone uses a separate line to place a call to the transfer target.
The call isindependently handled by a second instance of the Tcl IV R script running on Gateway 1. This
script instance treats the call as a normal two-party call and is not aware it is a consultation call.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from |P phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
reguest is received by the script instance on Gateway 2 that is handling the call between phones A and
C. This script sends a consultation response that includes a consultation ID. For SIP, the consultation
request is not relayed to phone C. Instead, a consultation ID is generated locally by Gateway 1. In both
cases, when the script on Gateway 1 receives the consultation response, it relaysit to |P phone A. In
addition, due to the internal consultation |D management scheme in the 10S application framework, the
consultation ID received from Gateway 2 is registered to this script instance (the second instance).

Next, thefirst script instance on Gateway 1 receives atransfer request from IP phone A that includesthe
consultation ID it received from the second script instance on Gateway 1. The script instance then sends
a SIP or H.450 transfer request to phone B that includes this consultation ID. The transfer request is
received by the script instance handling the call between phones A and B on Gateway 2. This script
places acall to phone C. Since the consultation ID included in the setup request matches the one sent to
Gateway 1 in the consultation response, the call setup is completed by handing off the incoming call to
the second script instance. See Figure 1-31.

Figure 1-31 Two gateways (XOR & XEE/XTO): Cisco CME IP phone XOR consultation transfer

Gateway 1 Gateway 2

_
Transfer request

Script 1 Script 1
Transfer request
17 XOR XOR XOR XOR
H.323 or

w0 0
—
Phone A H.323 or XEE

SIP
XOR XTO
Setup request Script 2
e

AOIXOR XT
R xoR— 0
Script 2

Consult response
Consult request

Consult request
_—>

Consult response
D

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

After the handoff, the original call from phone A to phone B is disconnected by the first script instance

on Gateway 2 and the consultation call from phone A is disconnected by the second script instance. See
Figure 1-32.

Figure 1-32 Two gateways (XOR & XEE/XTO): Cisco CME IP phone XOR after transfer
Gateway 1 Gateway 2

TCL IVR script
XEE

H.323 or
SIP Phone A

Pﬁone_ B

95888

Three Gateway Scenario with Analog Transferor

Figure 1-33 shows a scenario where three gateways are involved in the call transfer. Each call transfer
participant is connected to a separate |OS gateway.

Figure 1-33 Three gateways: Analog XOR before transfer
Gateway 2

Phone B

Gateway 1

Gateway 3

TCL IVR script

SIP

Pﬁone_C

95889

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter1

Overview

Cisco I0S Version 12.3(2)T

Tcl IVR Call Transfer Overview

To initiate ablind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
is received by the script handling the call on Gateway 2. This script places a regular outbound call to
phone C. The script that receives the incoming call setup on Gateway 3 treats this as a normal two-party
call. When the setup compl etes, the script on Gateway 2 sends atransfer response to phone A. The script
on Gateway 1 receives the transfer response and releases the call from phone A. See Figure 1-34.

Figure 1-34 Three gateways: Analog XOR blind transfer
Gateway 2

Gateway 1 Gateway 3

Transfer Setup
request request
TCL IVR script H.323 H.323

SIP

o
D
s}
n
(=2}

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). For H.450 call transfers, a consultation request protocol messageis sent to
phone C. Thisrequest is received by the script instance on Gateway 3 that is handling the call between
phones A and C. The script sends a consultation response that includes a consultation ID. See

Figure 1-35.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 transfer request to phone B that includes the consultation ID.

This transfer request is received by the script handling the call between phones A and B on Gateway 2.
This script places a call to phone C. The setup request includes the consultation 1D received in the
transfer request from phone A. When the incoming setup request from phone B arrives at Gateway 2, it
is delivered to the script instance handling the call between phones A and C.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Figure 1-35 Three gateways: Analog XOR consultation transfer
Gateway 2

Gateway 1

Transfer

request
H.323
TCL IVR script ‘

XEE SIP

Setup

Gateway 3

request
H.323

SIP

Setup request
P —

Consult request
IE——

Consult response
<«

Pﬁone_C

95891

This script instance connects the incoming call to phone C and disconnects the call from phone A. See

Figure 1-36.

Figure 1-36 Three gateways: Analog XOR after transfer

Gateway 1

Gateway 2

Gateway 3

o
D
©
¥}
(=2}

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapterl Overview

Tcl IVR Call Transfer Overview

Three Gateway Scenario with Cisco CME IP Phone Transferor

Figure 1-37 shows a scenario where three gateways are involved in the call transfer. Each call transfer
participant is connected to a separate |OS gateway.

Figure 1-37 Three gateways: Cisco CME IP Phone XOR before transfer
Gateway 2

Gateway 1 Gateway 3

Phone A

™
[=2]
[*9]
[Te]
(52

To initiate a blind transfer, the | P phone user presses the transfer button on the phone and enters the
transfer destination. The script receives atransfer request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call on Gateway
2. This script places aregular outbound call to phone C. The script that receives theincoming call setup
on Gateway 3 treats this as a normal two-party call. When the setup compl etes, the script on Gateway 2
sends atransfer response to phone A. The script on Gateway 1 receivesthetransfer response and rel eases
the call from phone A. See Figure 1-38.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Figure 1-38 Three gateways: Cisco CME IP Phone XOR blind transfer
Gateway 2

Gateway 1 Gateway 3

Transfer Setup

request request
H.323 H.323
EEE— .

3 .Transfer request ‘ ‘

yaw g N
IP J[= SIP
—

Phone A

<
(=2}
s}
n
o

To initiate a consultation transfer, the |P phone user presses the transfer button on the phone and enters
the transfer destination number. The | P phone uses a separate line to place a call to the transfer target.
Thiscall isindependently handled by a second instance of the Tcl 1 VR script running on Gateway 1. The
script instance treats this call as a normal two-party call and is not aware it is a consultation call. See
Figure 1-39.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from 1P phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 3 that is handling the call between phones A and
C. This script sends a consultation response that includes a consultation ID.

For SIP, the consultation request is not relayed to phone C. Instead, aconsultation ID isgenerated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it relays
it to IP phone A. In addition, due to the internal consultation ID management scheme in the |OS
application framework, the consultation ID received from Gateway 2 is registered to this script instance
(the second instance).

Next, the first script instance on Gateway 1 receives atransfer request from IP phone A that includesthe
consultation ID it received from the second script instance. This script instance then sends a SIP or
H.450 transfer request to phone B that includes this consultation I1D.

The transfer request is received by the script instance handling the call between phones A and B on
Gateway 2. This script places acall to phone C. The setup request includes the consultation 1D received
in the transfer request from phone A. When the incoming setup request from phone B arrives at Gateway
3, it is delivered to the script instance handling the call between phones A and C.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Tcl IVR Call Transfer Overview

Figure 1-39 Three gateways: Cisco CME IP Phone XOR consultation transfer
Gateway 2

Gateway 3

Gateway 1

Transfer Setup

request request
: H.323 H.323
Transfer Script 1 ‘
request
/// XOR XEE sIiP SiP
s/

. Setup
" _request

Phone A A Script 1 Setup request Phone C
\\ —_—>
Consult N\\|x0OR XEE Consult request
B ——

response

95895

Consult Consult response
<«

request

This script instance connects the incoming call to phone C and disconnects the call from phone A. See
Figure 1-40.

Figure 1-40 Three gateways: Cisco CME IP Phone XOR after transfer
Gateway 2

Gateway 3

Gateway 1

Pﬁone_C

95896

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Call Transfer Protocol Support

The following subsection provides an overview of the call transfer protocols supported using Tcl IVR
scripting on an 10S voice gateway. Refer to the appropriate section above for various scenarios that may
use these protocols.

Analog Hookflash and T1 CAS Release Link Trunk (RLT) Transfers

Transferor Support

A script cannot initiate a hookflash transfer towards a T1 CAS or analog FXO endpoint. Instead, the
script can place an outbound call to the transfer target and connect the transferee and transfer target call
legs after the call is established.

Transferee Support

A Tcl VR script can receive a hookflash transfer request from a T1 CAS or analog FX'S endpoint
connected to the gateway. The subscriber is able to initiate a blind or consultation call transfer using
hookflash and DTMF digits.

When the script receives a hookflash transfer trigger, it can provide dialtone and collect the transfer
target destination through DTMF.

When the script receives a transfer commit request, it can do one of the following:

- Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

» Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl 1VR script cannot receive a consultation request or setup indication containing a consultation ID
from an analog endpoint.

ISDN Call Transfer

Transferor Support

A Tcl IVR script can send an ISDN Two B-Channel Transfer (TBCT) request to the transferee call leg
when the transferee and transfer target are both part of the same TBCT group on the PBX connected to
the gateway.

When the script initiates a TBCT request, the 10S software places a call to the transfer target. When the
transfer target answers, the |OS softwareinitiatesthe TBCT if both the transferee and transfer target are
part of the same TBCT group configured on the PBX. If the transferee and transfer target are not part of
the same TBCT group, the transferee and transfer target call legs are bridged by the script. If the call is
successfully transferred to the PBX, the transferee and transfer target call legs are rel eased and the script
can close the call. In some cases, the script can re-connect the transferor and transferee call legsif the

transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

» Place aconsultation call to the transfer target device and connect the transferor and transfer target
call leg when the call is established.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Note

SIP Call Transfer

Note

Tcl IVR Call Transfer Overview

- If thetransferee and transfer target are part of the same TBCT group, the script can do the following
when the transfer is committed:

— Request alocal TBCT consultation ID.

— Send a TBCT request to the transferee call leg. The transfer request includes the consultation
ID.

— If the call is successfully transferred to the PBX, the transferee and transfer target call legs are
released, and the script can close the call.

— In some cases, the script may re-connect the transferor and transferee call legs if the transfer
attempt is unsuccessful.

» |If thetransferee and transfer target are not part of the same TBCT group, the transferee and transfer
target call legs can be bridged by the script when the transfer is committed.

Transferee Support

A Tcl VR script does not support any network-side ISDN call transfer protocols and is not able to
receive a call-transfer request from an ISDN device.

It is possible to allow an ISDN subscriber to initiate a blind transfer using DTMF input to trigger the
transfer. This mechanismissimilar to the analog FXSand T1 CA Stransfer mechanisms described above
and is not discussed further in this document.

Transfer Target Support

A Tcl IVR script cannot receive a consultation request or setup indication with a consultation 1D from
an ISDN endpoint.

Transferor Support
A Tcl IVR script can send a REFER transfer request to a remote transferee call leg. The script can also
initiate a consultation call when performing a consultation transfer.

The script can initiate a blind transfer by sending a REFER message to the remote transferee. If the
transfer is successful, the transferee places a call the transfer target. The call is established without
involvement of this script and the script can close the call. In some cases, the script can re-connect the
transferor and transferee call legsif the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

» Place aconsultation call to the transfer target device, and connect the transferor and transfer target
call leg when the call is established.

« When the transfer is committed, request a consultation ID.

Unlike H.450 transfers, the script handling the consultation call between the transferor and transfer
target does not receive a consultation request from the transferor. Instead, the consultation ID is
generated locally by the script handling the original call between the transferor and transferee.

» Send a REFER to the transferee call leg. Thisincludes the consultation ID. The transferee device
includes the consultation ID in the INVITE message it sends to the transfer target.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Note

Note

« If the transfer is successful, the transferee calls the transfer target. The call is established without
involvement of this script and the script can close the call.

« Insome cases, the script may re-connect the transferor and transferee call legsif the transfer attempt
is unsuccessful.

Transferee Support
A Tcl IVR script can receive a SIP REFER or BY E/ALSO transfer request from aremote S|P transferor.
When the script receives a transfer request, the script can do one of the following:

- Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

It is not currently possible to interwork SIP and H.450 transfer requests.

» Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

When the gateway receives an INVITE request from the remote transferee that includes a consultation
ID, it'sdelivered to the script instance handling the consultation call to the transfer target. The script can
then connect the transferee and transfer target call legs and disconnect the transferor call leg.

Unlike H.450 transfers, the script handling the consultation call between the transferor and transfer
target does not receive a consultation request from the transferor. Instead, the consultation ID is
generated locally by the script that is handling the original call between the transferor and transferee.

H.450 Call Transfer

Transferor Support

A Tcl IVR script can send a H450.2 transfer request to atransferee call leg. The script can also initiate
a consultation call when performing a consultation transfer.

The script can initiate a blind transfer by sending an H450.2 transfer request to the remote transferee. If
the transfer is successful, the transferee calls the transfer target. The call is established without
involvement of this script and the script can close the call. In some cases, the script can re-connect the
transferor and transferee call legsif the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

» Place aconsultation call to the transfer target device, and connect the transferor and transfer target
call leg when the call is established.

» When the transfer is committed, request a consultation ID from the transfer target.

» Send an H450.2 transfer request to the transferee call leg. Thisincludesthe consultation ID received
in the consultation response from the transfer target device. The transferee includes the consultation
ID in the SETUP request it sends to the transfer target.

» If thetransfer issuccessful, the transferee calls the transfer target and the call is established without
involvement of this script. The script can then close the call.

» In some cases, the script can re-connect the transferor and transferee call legsif the transfer attempt
is unsuccessful.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapterl Overview

Note

Tcl IVR Call Transfer Overview

Transferee Support
A Tcl IVR script can receive an H450.2 transfer request from aremote H.323 transferor. When the script
receives a transfer request, it can do one of the following:

- Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

It is not possible to interwork SIP and H.450 transfer requests.

» Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script can receive a consultation request from a remote H450 transferor and send a
consultation response that includes the consultation | D and transfer destination. Thistransfer destination
is the number the transferee should use when placing a call to the transfer target.

When the gateway receives a SETUP request from the remote transferee that includes an H450.2
consultation ID, it's delivered to the script instance handling the consultation call to the transfer target.
The script can then connect the transferee and transfer target call legs and disconnect the transferor call

leg.

Cisco Call Manager Express Call Transfer

Transferor Support

A Tcl IVR script cannot send a call transfer request to alocal |P phone registered with the |OS gateway
operating in Cisco Call Manager Express (CME) mode. Instead, the script can place an outbound call to
the transfer target and connect the transferee and transfer target call legs after the call is established.

Transferee Support

A Tcl IVR script can receive a call transfer request from alocal |P phone registered with the 10S
gateway operating in Cisco CME mode. When the script receives atransfer request, it can do one of the
following:

- Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

» Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script can receive a consultation request from alocal Cisco CME |P phone and do one of the
following:

» Interwork the consultation request by relaying it to the other call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

- Send alocal consultation response to the IP phone that includes alocally generated consultation D
and transfer destination. This transfer destination is the number the transferee should use when
placing a call to the transfer target.

When the gateway receives a SETUP request from the remote transferee that includes a consultation 1D,
it’sdelivered to the script handling the consultation call to thetransfer target. The script can then connect
the transferee and transfer target call legs and disconnect the transferor call leg.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter1 Overview |

M Tcl IVR Call Transfer Overview

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

CHAPTER 2

Using Tcl IVR Scripts

This chapter contains information on how to create and use Tcl VR scripts and includes the following
topics:

e« How Tcl IVR Version 2.0 Works, page 2-1
« Writing an IVR Script Using Tcl Extensions, page 2-3
— Promptsin Tcl IVR Scripts, page 2-3
— Sample Tcl IVR Script, page 2-4
— Initialization and Setup of State Machine, page 2-8
» Testing and Debugging Your Script, page 2-8
— Loading Your Script, page 2-9
— Associating Your Script with an Inbound Dial Peer, page 2-10
— Displaying Information About VR Scripts, page 2-10
— Using URLsin IVR Scripts, page 2-13
— Tipsfor Using Your Tcl IVR Script, page 2-14

A

Note Sample Tcl IVR scripts are found at http://www.cisco.com/cgi-bin/tablebuild.pl/tclware.

How Tcl IVR Version 2.0 Works

With Tcl IVR Version 2.0, scripts can be divided into three parts: the initialization procedures, the action
functions, and the Finite State Machine (FSM).

- Initialization procedures are used to initialize variables. There are two types of initialization
procedures:

— Those functions that are called in the main code section of the script. These initialization
functions are called only once—when an execution instance of the script is created. (An
execution instance is an instance of the Tcl interpreter that is created to execute the script.) Itis
agood ideato initialize global variables (which will not change during the execution of the
script) during these initialization functions. Thisis also a good time to read command-line
interface (CLI) parameters.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 2 Using Tcl IVR Scripts |

B How Tcl IVR Version 2.0 Works

— Those functions that are called when the execution instance receives an ev_setup_indication or
ev_handoff event, which mark the beginning of acall. It is good to initialize call-specific
variables during these initialization functions.

When an execution instance of a script is created for handling a call, the execution instance is not
deleted at the end of the call, but isinstead held in cache. The next incoming call uses this cached
execution instance, if it is available. Therefore, any global variables that were defined by the script
when the first call was handled are used to handle the next call. The script should re-initialize any
call-specific variables in the action function for ev_setup_indication or ev_handoff.

Variablesthat need to beinitialized once and that will never change during the call can beinitialized
in the main code section of the script. For example, reading in configuration parametersis a
one-time process and does not need to occur for every call. Therefore, it is more efficient to include
these variables in the main code.

- Action functions are a set of Tcl procedures used in the definition of the FSM. These functions
respond to events from the underlying system and take the appropriate actions.

» The FSM defines the control flow of acall by specifying the action function to call in responseto a
specific event under the current state.

The starting state of the FSM is the state that the FSM isin when it receives a new call (indicated

by an ev_handoff or ev_setup_indication event). This state is defined when the state machine table
is registered using the fsm define command. From this point on, the events that are received from

the system drive the state machine and the script invokes the appropriate action procedure based on
the current state and the events received as defined by the set variable commands.

The FSM supports two wildcard states and one wildcard event:

— any_state, which can be used only as the begin state in a state transition and matches any state
for which a state event combination is not already being handled.

— same_state, which can be used only asthe end state of a state transition and maintains the same
state.

— ev_any_event, which can be used to represent any event received by the script.

For example, to create a default handler for any unhandled event, you could use:

set callfsn(any_state, ev_any_event)”defaultProc, sanme_state”

To instruct the script to close a call if it receives a disconnect on any call leg, you could use:
set callfsn(any_state, ev_di sconnected) “cleanupCall, CLOSE_CALL"

In the following example, by default if the script receives an ev_disconnected event, it closes the
call. However, if the script isin the media_playing state and receives an ev_disconnected event, it
waits for the prompt to finish and then closes the call.

set callfsn(any_state, ev_di sconnected) “cleanupCall, CLOSE_CALL"
set cal | f sn{MEDI A_PLAYI NG, ev_di sconnect ed) “doSont hi ngProc, MEDI A WAl T_STATE"
set cal | f sm(MEDI A_WAI T_STATE, ev_nedi a_done) "cl eanupCal |, CLOSE_CALL"

For more information about events, see Chapter 5, “ Events and Status Codes”.

When the gateway receives a call, the gateway hands the call to an application that is configured on the
system. If the applicationisaTcl script that uses Tcl IVR API Version 2.0, an execution instance of the
application (or script) is created and executed.

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter2 Using Tcl IVR Scripts

Note

Writing an

Note

Writing an IVR Script Using Tcl Extensions Il

When the script is executed, the Tcl interpreter reads the procedures in the script and executes the main
section of the script (including the initialization of global variables). At this point, the fsm define
command registers the state machine and the start state. Thisinitialized execution instance is handed the
call. From then on (until the call close command), when an event is received, the appropriate action
procedure is called according to the current state of the call and the event received by the script.

An execution instance can handle only one call. Therefore, if the system is handling 10 calls using the
same script, there will be 10 instances of that script. In between calls, the execution instances are cached
to handle the next call. These cached execution instances are removed when the application is rel oaded.
Cached execution instances are also removed if aCLI parameter or attribute-value (AV)-pair is changed,
removed, or added, or if an application is unconfigured.

With the previous version of the Tcl IVR API, every execution instance of a script ran under its own
Cisco |OS process. Asaresult, handling 100 callsrequired 100 processes, each one running an execution
instance of the script. With Tcl IVR API Version 2.0, multiple execution instances share the same Cisco
|OS process. However, multiple Cisco |OS processes can be spawned to share the load—depending on
the resources on the system and the number of calls.

IVR Script Using Tcl Extensions

Before you write an IVR script using Tcl, you should familiarize yourself with the Tcl extensions for
IVR scripts. You can use any text editor to create your Tcl VR script. Follow the standard conventions
for creating a Tcl script and incorporate the Tcl VR commands as necessary.

A sample script is provided in this section to illustrate how the Tcl IVR API Version 2.0 commands can
be used.

If the caller hangs up, the script stops running and the call legs are cleared. No further processing is done
by the script.

Prompts in Tcl IVR Scripts

N

Note

Tcl IVR API Version 2.0 allows two types of prompts: memory-based and RTSP-based prompts.

- With memory-based prompts, the prompt (audio file) isread into memory and then played out to the
appropriate call legs as needed. Memory-based prompts can be read from Flash memory, a TFTP
server, or an FTP server.

» With RTSP-based prompts, you can use an external (RTSP-capable) server to play a specific audio
file or content and to stream the audio to the appropriate call leg as needed. Some platforms may not
support RTSP-based prompts. For those platforms, the prompt fails with a status code in the
ev_media_done event.

As mentioned earlier, through the use of dynamic prompts, Tcl IVR API Version 2.0 also provides some
basic TTS functionality, like playing numbers, dollar amounts, date, and time. It also allows you to
classify prompts using different languages so that when the script is instructed to play a particular
prompt, it automatically plays the prompt in the active or specified language.

When setting up scripts, it is recommended not to use RTSP with very short prompts or dynamic
prompts, because of poor performance.

| Doc Version 12.3.2

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts |

M Writing an IVR Script Using Tcl Extensions

Sample Tcl IVR Script

The following example shows how to use the Tcl IVR API Version 2.0 commands. We recommend that
you start with the header information. This includes the name of the script, the date that the script was
created and by whom, and some general information about what the script does.

We also recommend that you include a version number for the script, using athree-digit system, where
the first digit indicates a major version of the script, the second digit is incremented with each minor
revision (such as a change in function within the script), and the third digit is incremented each time any
other changes are made to the script.

The following sample script plays dial-tone, collects digits to match adial-plan, places an outgoing call
to the destination, conferences the two call legs, and destroys the conference call legs and the disconnect
call legs, when anyone hangs up.

app_session.tcl

Script Version 1.0.1
)
August 1999, Saravanan Shanmugham

#

Copyright (c) 1998, 1999 by cisco Systens, Inc.

Al rights reserved.
)
#

This tcl script minmcs the default SESSION app

#

#

|f DIDis configured, place the call to the dnis.

Otherw se, output dial-tone and collect digits fromthe

call er against the dial-plan.

#

Then place the call. If successful, connect it up. Oherwi se,

the caller should hear a busy or congested signal.

H*

The main routine establishes the state machine and then exits.
From then on, the systemdrives the state machi ne dependi ng on the
events it receives and calls the appropriate Tcl procedure.

H* H#*

Next, we define a series of procedures.

Theinit procedure defines the initial parameters of the digit collection. In this procedure:
- Usersare allowed to enter information before the prompt message is complete.
- Usersare allowed to abort the process by pressing the asterisk key.

» Usersmust indicate that they have completed their entry by pressing the pound key.

proc init { } {
gl obal param

set paran(interruptPronpt) true
set paran{abortKey) *
set paran(term nati onKey) #

}

The act_Setup procedure is executed when an ev_setup_indication event is received. It gathers the
information necessary to place the call. In this procedure:

« A setup acknowledgement is sent to the incoming call leg.

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter2 Using Tcl IVR Scripts

Writing an IVR Script Using Tcl Extensions Il

« If thecall isDirect Inward Dial (DID), the destination is set to the Dialed Number Information
Service (DNIS), and the system responds with a proceeding message on the incoming leg and tries
to set up the outbound leg with the leg setup command.

- If not, adial toneis played on the incoming call leg and digits are collected against a dial plan.

proc act_Setup { } {
gl obal dest
gl obal beep

set beep O
| eg setupack | eg_incom ng

if { [infotag get leg_isdid] } {
set dest [infotag get |eg_dnis]
| eg proceeding | eg_incom ng
| eg setup $dest calllnfo |eg_incom ng
fsm setstate PLACECALL
} else {

pl aytone | eg_i ncom ng tn_dial

set paran(dial Pl an) true
leg collectdigits | eg_incom ng param

}

}
The act_GotDest procedure is executed when an ev_collectdigits_done event is received. It determines

whether the collected digits match the dial plan, in which case the call should be placed. In this
procedure:

- If the digit collection succeeds with a match to the dial plan (cd_004), the script proceeds with
setting up the call.

» Otherwise, the script reports the error and ends the call. For alist of other digit collection status
values, see the “Digit Collection Status” section on page 5-5.

proc act_CotDest { } {
gl obal dest

set status [infotag get evt_status]

if { $status == "cd_004" } {
set dest [infotag get evt_dcdigits]
| eg proceeding | eg_incom ng
| eg setup $dest calllnfo |eg_incom ng

} else {
puts "\nCall [infotag get con_all] got event $status collecting destination”
call close

}

The act_CallSetupDone procedure is executed when an ev_setup_done event isreceived. It determines
whether there is atime limit on the call. In this procedure:

» When the call is successful (Is_000), the script obtains the amount of credit time.
« If avalue other than unlimited or uninitialized is returned, a timer is started.

- If thecall isnot successful, the script reportsthe error and closes the call. For alist of other leg setup
status values, see the “Leg Setup Status” section on page 5-8.

proc act_Call SetupbDone { } {
gl obal beep

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 2 Using Tcl IVR Scripts |

M Writing an IVR Script Using Tcl Extensions

set status [infotag get evt_status]
if { $status == "Is_000"} {

set creditTinmeLeft [infotag get |leg_settlenent_tinme |eg_outgoing]

if { ($creditTineLeft == "unlimted") ||
($creditTinmeLeft == "uninitialized") } {
puts “\n Unlimted Tinme"

} else {

start the timer for
if { $creditTinmeLeft < 10 } {

set beep 1
set delay $creditTineLeft
} else {
set delay [expr $creditTimeLeft - 10]
}
timer start leg_timer $delay |eg_incomi ng
} else {
puts "Call [infotag get con_all] got event $status while placing an outgoing
call"
call close
}
}

The act_Timer procedure is executed when an ev_leg_timer event is received. It is used in the last
10 seconds of credit time and warns the user that time is expiring and terminates the call when the credit
limit is reached. In this procedure;

- Whilethereistime left, the script inserts a beep to warn the user that time is running out.

- Otherwise, the “out of time” audio file is played and the state machine is instructed to disconnect
the call.
proc act_Tiner { } {
gl obal beep

gl obal incom ng
gl obal out goi ng

set incomng [infotag get |eg_incom ng]
set outgoing [infotag get |eg_outgoing]

if { $beep == 0} {

#insert a beep ...to the caller
connection destroy con_al
set beep 1

} else {

medi a play leg_incomng flash:out_of _tine.au
fsm setstate CALLDI SCONNECTED

}

The act_Destroy procedure is executed when an ev_destroy_done event is received. It plays a beep to
the incoming call leg.
proc act_Destroy { } {

medi a play | eg_incom ng flash: beep. au

}

The act_Beeped procedure is executed when an ev_media_done event is received. It creates a
connection between the incoming and outgoing call legs.

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter2 Using Tcl IVR Scripts

Note

Writing an IVR Script Using Tcl Extensions Il

proc act_Beeped { } {
gl obal incom ng
gl obal out going

connection create $incom ng $out goi ng

}

Theact_ConnectedAgain procedureis executed when an ev_create_done event isreceived. It resetsthe
timer on the incoming call leg to 10 seconds.
proc act_ConnectedAgain { } {

timer start leg_timer 10 | eg_i ncom ng

}

The act_| gnore procedure reports “ Event Capture.”

proc act_lgnore { } {

Dunmy
puts "Event Capture”
}

The act_Cleanup procedure is executed when an ev_disconnected event is received and when the state
is CALLDISCONNECTED. It closes the call.

When the script receives an ev_disconnected event, the script has 15 seconds to clear the leg with the
leg disconnect command. After 15 seconds, a timer expires, the script is cleaned up, and an error
message is displayed to the console. This avoids the situation where a script might not have cleared a
leg after a disconnect.

proc act_Cleanup { } {
call close

}

Finally, we put all the procedures together in a main routine. The main routine defines a Tcl array that
defines the actual state transitions for the various state and event combinations. It registers the state
machine that will drive the calls. In the main routine:

- If the call is disconnected while in any state, the act_Cleanup procedure is called and the state
remains asit was.

» If a“setupindication” event isreceived whileinthe CALL_INIT state, the act_Setup procedureis
called (to gather the information necessary to place the call) and the state is set to GETDEST.

- If a“digit collection done” event is received while in the GETDEST state, the act_GotDest
procedure is called (to determine whether the collected digits match the dial plan and the call can
be placed) and the state is set to PLACECALL.

« |If a“setup done” event is received while in the PLACECALL state, the act_CallSetupDone
procedureis called (to determine whether there is atime limit on the call) and the state is set to
CALLACTIVE.

- If a“legtimer” event isreceived whilein the CALLACTIVE state, the act_Timer procedureis
called (to warn the user that time is running out) and the state is set to INSERTBEEP.

- If a“destroy done” event is received while in the INSERTBEEP state, the act_Destroy procedure
is called (to play a beep on the incoming call leg) and the state remains INSERTBEEP.

- If a“mediadone” event isreceived while in the INSERTBEEP state, the act_Beeped procedureis
called (to reconnect the incoming and outgoing call legs) and the state remains INSERTBEEP.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 2 Using Tcl IVR Scripts |

M Testing and Debugging Your Script

- If a“create done” event is received while in the INSERTBEEP state, the act_ConnectedAgain
procedureis called (to reset the leg timer on the incoming call leg to 10 seconds) and the state is set
to CALLACTIVE.

- If a“disconnect” event isreceived whilein the CALLACTIVE state, the act_Cleanup procedureis
called (to end the call) and the state is set to CALLDISCONNECTED.

- If a“disconnect” event isreceived while in the CALLDISCONNECTED state, the act_Cleanup
procedureis called (to end the call) and the state remains CALLDISCONNECTED.

« If a“mediadone” event isreceived while in the CALLDISCONNECTED state, the act_Cleanup
procedureis called (to end the call) and the state remains CALLDISCONNECTED.

» |If a“disconnect done” event is received while in the CALLDISCONNECTED state, the
act_Cleanup procedureis called (to end the call) and the state remains CALLDISCONNECTED.

- If a“legtimer” eventisreceived while in the CALLDISCONNECTED state, the act_Cleanup
procedureis called (to end the call) and the state remains CALLDISCONNECTED.

init

set TopFSM any_st at e, ev_di sconnected) "act_Cl eanup, sanme_st ate"

set TopFSM CALL_INI'T, ev_setup_indi cation) "act_Setup, GETDEST"

set TopFSM GETDEST, ev_col | ectdi gi ts_done) "act_GCot Dest, PLACECALL"

set TopFSM PLACECALL, ev_setup_done) "act_Cal |l Set upDone, CALLACTI VE"

set TopFSM CALLACTI VE, ev_l eg_timer) "act_Ti mer, | NSERTBEEP"

set TopFSM | NSERTBEEP, ev_destroy_done) "act_Destroy, same_state"

set TopFSM | NSERTBEEP, ev_nedi a_done) "act_Beeped, sane_state"

set TopFSM | NSERTBEEP, ev_cr eat e_done) "act _Connect edAgai n, CALLACTI VE"
set TopFSM CALLACTI VE, ev_di sconnect ed) "act _Cl eanup, CALLDI SCONNECTED"
set TopFSM CALLDI SCONNECTED, ev_di sconnect ed) "act_Cl eanup, sanme_st ate"
set TopFSM CALLDI SCONNECTED, ev_nedi a_done) "act_Cl eanup, sanme_state"

set TopFSM CALLDI SCONNECTED, ev_di sconnect _done) "act_Cl eanup, sane_state"
set TopFSM CALLDI SCONNECTED, ev_| eg_ti mer) "act_Cl eanup, sane_state"

Initialization and Setup of State Machine

The following command is used to initialize and set up the State Machine (SM):
fsmdefine TopFSM CALL_INT

Testing and Debugging Your Script

It is important to thoroughly test a script before it is deployed. To test a script, you must place it on a
router and place a call to activate the script. When you test your script, make sure that you test every
procedure in the script and all variations within each procedure.

You can view debugging information applicable to the Tcl IVR scripts that are running on the router.
The debug voip ivr command allows you to specify the type of debug output you want to view. To view
debug output, enter the following command in privileged-exec mode;

[no] debug voip ivr [states | error | tclcommuands | callsetup | digitcollect | script |
dynamic | applib | settlenment | all]

For more information about the debug voip ivr command, see the Interactive Voice Response
Version 2.0 on Cisco Vol P Gateways document on Cisco.com.

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter2 Using Tcl IVR Scripts

Testing and Debugging Your Script

The output of any Tcl puts commands is displayed if script debugging is on.

Possible sources of errors are:
« Anunknown or misspelled command (for example, if you misspell media play as mediaplay)
- A syntax error (such as, specifying an invalid number of arguments)

» Executing acommand in an invalid state (for example, executing the media pause command when
no prompt is playing)

- Using an information tag (info-tag) in an invalid scope (for example, specifying evt_dcdigits when
not handling the ev_collectdigits done event). For more information about info-tags, see Chapter 4,
“Information Tags”.

In most cases, an error such as these causes the underlying infrastructure to disconnect the call legs and
clean up.

Loading Your Script

Note

To associate an application with your Tcl 1VR script, use the following command:

(config)# call application voice application_name script_url

After you associate an application with your Tcl 1VR script, use the following command to configure
parameters:

(config)# call application voice application_nanme script_url [parameter val ue]

In this command:

- application_name specifies the name of the Tcl application that the system is to use for the calls
configured on the inbound dial peer. Enter the name to be associated with the Tcl 1VR script.

- script_url isthe pathname where the script is stored. Enter the pathname of the storage location first
and then the script filename. Tcl IVR scripts can be stored in Flash memory or on a server that is
acceptable using a URL, such asa TFTP server.

- parameter value allows you to configure values for specific parameters, such as language or PIN
length.

For moreinformation about the call application voice command, refer to the Interactive Voice Response
Version 2.0 on Cisco Vol P Gateways document on Cisco.com.

In the following example, the application named “test” is associated with the Tcl IVR script called
newapp.tcl, which islocated at tftp://keyer/debit_audio/:

(config)# call application voice test tftp://keyer/debit_audi o/ newapp.tcl

If the script cannot be loaded, it is placed in aretry queue and the system periodically retriesto load it.
If you modify your script, you can reload it using only the script name:(config)# cal | application
voi ce | oad script_nane

For moreinformation about the call application voice and call application voiceload commands, refer
to the Interactive Voice Response Version 2.0 on Cisco Vol P Gateways document on Cisco.com.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 2 Using Tcl IVR Scripts |

M Testing and Debugging Your Script

Associating Your Script with an Inbound Dial Peer

To invoke your Tcl 1VR script to handle a call, you must associate the application configured with an
inbound dial peer. To associate your script with an inbound dial peer, enter the following commandsin
configuration mode:

(config)# dial-peer voice nunber voip
(conf-dial -peer)# incom ng call ed-nunber destination_nunber
(conf-dial -peer)# application application_nane

In these commands:
» number uniquely identifies the dial peer. (This number has local significance only.)

» destination_number specifiesthe destination telephone number. Valid entries are any series of digits
that specify the E.164 telephone number.

- application_name is the abbreviated name that you assigned when you loaded the application.

For example, the following commands indicate that the application called “newapp” should be invoked
for calls that come in from an IP network and are destined for the telephone number of 125.

(config)# dial-peer voice 3 voip
(conf-dial -peer)# inconing call ed-nunmber 125
(conf-dial -peer)# application newapp

For more information about inbound dial peers, refer to the Cisco 10S software documentation.

Displaying Information About IVR Scripts

To view alist of the voice applications that are configured on the router, use the show call application
voice command. A one-line summary of each application is displayed.

show cal | application voice [[nanme] | [summary]]

In this command:

» name indicates the name of the desired IVR application. If you enter the name of a specific
application, the system supplies information about that application.

- summary indicates that you want to view summary information. If you specify the summary
keyword, a one-line summary is displayed about each application. If you omit this keyword, a
detailed description of the specified application is displayed.

The following is an example of the output of the show call application voice command:

router# show call application voice session2
Idle call list has O calls on it.
Application session2
The script is read fromURL tftp://dirt/sarvi/scripts/tcl/app_session.tcl

The uid-len is 10 (Defaul t)
The pin-len is 4 (Defaul t)
The warning-time is 60 (Default)
The retry-count is 3 (Defaul t)

It has 0 calls active.

The Tcl Script is:

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter2 Using Tcl IVR Scripts

H* o o H®

H o HHHHHHHHR

o

p

}

p

}

p

Cisco I0S Version 12.3(2)T

Testing and Debugging Your Script

August 1999, Saravanan Shannmugham

Copyright (c) 1998, 1999 by cisco Systens, Inc.
Al'l rights reserved.

This tcl script mmcs the default SESSION app

If DD is configured, just place the call to the dnis
Gt herw se, output dial-tone and collect digits fromthe
cal l er against the dial-plan.

Then place the call. |If successful, connect it up, otherw se
the caller should hear a busy or congested signal.

The main routine just establishes the state machine and then exits.

From then on the systemdrives the state machi ne dependi ng on the
events it receives and calls the appropriate tcl procedure

roc init { } {
gl obal param

set paran(interruptPronpt) true
set paran(abortKey) *
set paran(term nati onKey) #

roc act_Setup { } {
gl obal dest
gl obal beep

set beep O
| eg setupack | eg_incom ng

if { [infotag get leg_isdid] } {
set dest [infotag get |eg_dnis]
| eg proceeding | eg_incom ng
| eg setup $dest calllnfo I eg_incom ng
fsm setstate PLACECALL
} else {

pl aytone | eg_i ncom ng tn_dial
set paran(dial Pl an) true

leg collectdigits | eg_incom ng param

}

roc act_GCotDest { } {
gl obal dest

set status [infotag get evt_status]

if { $status == "cd_004" } {

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 2

Using Tcl IVR Scripts |

M Testing and Debugging Your Script

set dest [infotag get evt_dcdigits]
| eg proceeding | eg_incom ng
| eg setup $dest calllnfo |eg_incomng

} else {

puts "\nCall [infotag get con_all] got event $status while placing an outgoi ng

call"
call close

}

proc act_Call SetupDone { } {
gl obal beep

set status [infotag get evt_status]

if { $status == "CS_ 000"} {

set creditTineLeft [infotag get |leg_settlenent_tine | eg_outgoing]

if { ($creditTineLeft == "unlimted") ||
($creditTinmeLeft == "uninitialized") } {
puts "\n Unlimted Tinme"

} else {

start the timer for
if { $creditTineLeft < 10 } {

set beep 1
set delay $creditTi meLeft
} else {
set delay [expr $creditTimeLeft - 10]
}
timer start leg_tinmer $delay |eg_incon ng
}
} else {

puts "Call [infotag get con_all] got event $status collecting destination”

call close

}

proc act_Tiner { } {
gl obal beep
gl obal incom ng
gl obal out goi ng

set incomng [infotag get |eg_incom ng]
set outgoing [infotag get |eg_outgoing]

if { $beep == 0} {

#insert a beep ...to the caller
connection destroy con_al
set beep 1

} else {

medi a play leg_incomng flash:out_of _tine.au
fsm setstate CALLDI SCONNECTED

}

proc act_Destroy { } {
medi a play | eg_incom ng flash: beep. au

}

proc act_Beeped { } {
gl obal inconing

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter2 Using Tcl IVR Scripts

Testing and Debugging Your Script

gl obal out goi ng

connection create $incom ng $out goi ng

}

proc act_ConnectedAgain { } {
timer start leg_timer 10 | eg_incom ng

}

proc act_Ignore { } {

Dunmy
puts "Event Capture”
}

proc act_Ceanup { } {
call close

set TopFSM any_st ate, ev_di sconnected) "act_Cl eanup, sanme_st ate"

set TopFSM CALL_INIT, ev_setup_indi cation) "act_Setup, GETDEST"

set TopFSM GETDEST, ev_di gi tcol | ect _done) "act_GCot Dest, PLACECALL"

set TopFSM PLACECALL, ev_setup_done) "act_Cal |l Set upDone, CALLACTI VE"

set TopFSM CALLACTI VE, ev_l eg_timer) "act_Ti mer, | NSERTBEEP"

set TopFSM | NSERTBEEP, ev_destroy_done) "act_Destroy, same_state"

set TopFSM | NSERTBEEP, ev_nedi a_done) "act_Beeped, sane_state"

set TopFSM | NSERTBEEP, ev_cr eat e_done) "act _Connect edAgai n, CALLACTI VE"
set TopFSM CALLACTI VE, ev_di sconnect ed) "act _Cl eanup, CALLDI SCONNECTED"
set TopFSM CALLDI SCONNECTED, ev_di sconnect ed) "act_Cl eanup, sanme_st ate"
set TopFSM CALLDI SCONNECTED, ev_nedi a_done) "act_Cl eanup, sanme_st ate"

set TopFSM CALLDI SCONNECTED, ev_nedi a_done) "act_Cl eanup, sane_st ate"

set TopFSM CALLDI SCONNECTED, ev_di sconnect _done) "act_Cl eanup, sane_st ate"
set TopFSM CALLDI SCONNECTED, ev_| eg_ti mer) "act_Cl eanup, sanme_state"

fsmdefine TopFSM CALL_INIT

Using URLs in IVR Scripts

With IVR scripts, you use URLs to call the script and to call the audio files that the script plays. The
Vol P system uses Cisco |OS File System (IFS) to read thefiles, so any |FS supported URL s can be used,
which includes TFTPR, FTP, or a pointer to a device on the router.

Note Thereisalimit of 32 entriesin Flash memory, so you may not be able to copy all your audio files into
Flash memory.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 2 Using Tcl IVR Scripts |

M Testing and Debugging Your Script

URLs for Loading the IVR Script

The URL of the IVR script is astandard URL that points to the location of the script. Examples include:
- flash:myscript.tcl—The script called myscript.tcl is being loaded from Flash memory on the router.

» slotO:myscript.tcl—The script called myscript.tcl is being loaded from a device in slot 0 on the
router.

- tftp://BigServer/myscripts/betterMouseTrap.tcl—The script called myscript.tcl is being loaded
from a server called BigServer in a directory within the tftpboot directory called myscripts.

URLSs for Loading Audio Files

URLSs for audio files are different from those used to load IVR scripts. With URLs for audio files:

- For static prompts, you can use the IFS-supported URL s as described in the “URLsfor Loading the
IVR Script” section on page 2-14.

» For dynamic prompts, the URL is created by the software, using information from the parameters
specified for the media play command and the language CLI configuration command.

Tips for Using Your Tcl IVR Script

This section provides some answers to frequently asked questions about using Tcl 1VR scripts.
- How do | get information from my RADIUS server to the Tcl IVR script?

After you have performed an authentication and authorization, you can use the infotag get command
to obtain the credit amount, credit time, and cause codes maintained by the RADIUS server.

« What happens if my script encounters an error?

When an error is encountered in the script, the call is cleared with a cause of

TEMPORARY _FAILURE (41). If the IVR application has already accepted the incoming call, the
caller hearssilence. If the script has not accepted the incoming call, the caller might hear afast busy
signal.

If the script exitswith an error and 1V R debugging ison (as described in the “ Testing and Debugging
Your Script” section on page 2-8), the location of the error in the script is displayed at the command
line.

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

Tcl IVR APl Command Reference

CHAPTER 3

This chapter provides an alphabetical listing of the Tcl IVR API commands and includes the following
topics:

The following is provided for each command:

Standard Tcl Commands Used in Tcl IVR Scripts

Standard Tcl Commands Used in Tcl IVR Scripts, page 3-1
Tcl IVR Commands At a Glance, page 3-2

Tcl IVR Commands, page 3-4

Description of the purpose or function of the command

Description of the syntax

List of arguments and a description of each

List of the possible return values and a description of each

List of events received upon command completion

Example of how the command can be used

For information about returns and events, see Chapter 5, “ Events and Status Codes”.

The following standard Tcl 8.3.4 commands can be used in Tcl IVR 2.0 scripts:

append array binary break
case catch clock concat
continue encoding error eval
expr for foreach format
global history if incr
info join lappend l[index
linsert list [Tength [range
Ireplace [search [sort namespace
proc puts regexp regsub
rename return scan set
split string subst switch
tcl_trace time unset update
uplevel upvar variable while

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands At a Glance

N

Note

For the puts command, the display is limited to a character size of 2K.

For additional information about the standard Tcl commands, see the Tcl and the TK Toolkit by John
Ousterhout (published by Addison Wesley Longman, Inc).

Tcl IVR Commands At a Glance

In addition to the standard Tcl commands, you can use the Tcl IVR extensions that Cisco has created.
Also, Cisco modified the existing puts Tcl command to perform specific tasks. The Tcl IVR API Version
2.0 commands are listed in Table 3-1.

Table 3-1

Tcl IVR Commands

Command

Description

aaa accounting

Sends start or update accounting records

aaa authenticate

Sends an authentication request to an external system, typically a Remote Access
Dial-In User Services (RADIUS) server.

aaa authorize

Sends an authorization request to an external system, typically aRADIUS server.

call close Marks the end of the call, releases all resources associated with that call, and
frees the execution instance to handle the next call.
clock Performs one of several operationsthat can obtain or manipulate strings or values

that represent some amount of time.

command terminate

Terminates a previously issued command.

connection create

Connects two call legs.

connection destroy

Destroys a connection.

fsm define

Registers a state machine specified by a Tcl array and its start state.

fsm setstate

Specifies the next state of the FSM after completion of the current action
procedure.

handoff appl

Hands off the call leg to another application. The call leg cannot be returned
using the handoff return command.

handoff callappl

Hands off the call leg to another application and waits for the call leg to return.

handoff return

Returns the call leg to the application.

infotag get Retrieves information from a call leg, script, or system.
infotag set Allows you to set information in the system.

leg alert Sends an alert message to the specified leg.

leg callerid Sends an updated call number and name after a transfer.

leg collectdigits

Moves the call into Digit Collect mode and collects the digits.

leg connect

Sends a call connect message to the incoming call leg.

leg consult abandon

Sends a call transfer consultation abandon request on the specified leg.

leg consult response

Sends a call transfer consultation identifier response on the specified leg.

leg consult request

Sends a call-transfer consultation identifier request on the specified leg.

leg disconnect

Disconnects one or more call legs that are not part of a connection.

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter3

Tcl IVR APl Command Reference

Tcl IVR Commands Ata Glance W

Table 3-1 Tcl IVR Commands

leg
disconnect_prog_ind

Sends a disconnect message with the specified progress indicator value to the
specified leg.

leg facility

Originates a facility message.

leg proceeding

Sends a call proceeding message to the incoming call leg.

leg progress

Sends a progress message to the specified leg.

leg setup

Initiates an outgoing call setup to the destination number.

leg setup_continue

Initiate a setup to an endpoint address or |ets the system continue its action after an
event interrupts the call processing.

leg setupack

Sends a call setup acknowledgement back to the incoming call leg.

leg transferdone

Indicates the status of the call transfer on a call-leg and disconnects the call-leg.

leg vxmldialog Initiates a VoiceXML dialog on the specified leg.

leg vxmlsend Throws an event at an ongoing VoiceXML dialog on the leg.
log Originates a syslog message.

media pause Pauses the prompt playing on a specific cal leg.

media play Plays a prompt on a specific call leg.

media record

Records the the audio received on the specified call leg and saves it to the
location specified by the URL.

media resume

Resumes play of a prompt on a specific call leg.

media seek

Seeks forward or backward in the current prompt.

media stop

Stops the prompt playing on a specific call leg.

object create
dial-peer

Creates alist of dial-peer handles.

object create gtd

Creates a GTD Handle to a new GTD area from scratch.

object destroy

Destroys one or more dial peer items.

object append gtd

Appends one or more GTD attributes to a handle.

object delete gtd

Deletes one or more GTD attributes.

object replace gtd

Replaces one or more GTD attributes.

object get gtd

Retrieves the value of an attribute instance or alist of attributes associated with
the given GTD handle.

object get dial-peer

Returns dial peer information of a dial peer item or a set of dial peers.

playtone

Plays a specific tone or one according to the status code provided on a call leg.

puts

Prints the parameter to the console. Used for debugging.

requiredversion

Verifies the current version of the Tcl IVR API.

set avsend Sets an associative array containing standard AV or VSA pairs.

set callinfo Sets the parametersin an array that determines how the call is placed.
timer left Returns the time left on an active timer.

timer start Starts atimer for acall on a specific call leg.

timer stop Stops the timer.

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Tcl IVR Commands

The following is an alphabetical list of available Tcl VR commands.

aaa accounting

A

Note

The aaa accounting command sends start or update accounting records.

Thereisno stop verb. The stop record should always be generated automatically because of data availability.
Use the update verb to add additional AVsto the stop record.

Syntax
aaa accounting start {leglD | info-tag} [-a avlistSend][-s servertag][-t acctTempName]

aaa accounting update {legID | info-tag} [-a avlistSend]

Arguments
« legiD—The call leg id (incoming or outgoing).

- info-tag—A direct mapped info-tag mapping to one leg. For more information on information tags,
see Chapter 4, “Information Tags”.

» -sservertag—The server (or server group)’s identifier. This value refer to the method-list-name as
in AAA configuration:

aaa accounting connection {default | method-list-name} group group-name
Default value ish323 (backward-compatible).

- -t acctTempName—Choose an accounting template which defines what attributes to send to the
RADIUS server.

- -aavlistSend—Specify alist of av-pairsto append to the accounting buffer, which will be sent in the
accounting record, or replace existing one(s) if the attribute in the list has ar flag associated with
it. For example:

set avlistSend(h323-credit-amunt, r) 50.

Return Values
None.

Command Completion
Immediate.

Examples

aaa accounting start leg_incomng -a avlList -s $nethod -t S$tenplate
aaa accounting update |l eg_incom ng -a avlLi st

Usage Notes

- After astart packet isissued, a corresponding stop packet is issued regardless of any suppressing
configuration.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3

Tcl IVR APl Command Reference

Tcl IVR Commands 1l

If debug voip aaais enabled and an accounting start packet has already been issued, either by the
VolIP infrastrucure (enabled by Cisco |OS configuration command gw-accounting aaa) or
execution of this Tcl verb in the script, the start request isignored and a warning message is issued.

If debug voip aaais enabled and the update verb is called before start, the request isignored and
awarning message is issued.

Although the original intent of this option is for additional application-level attributes (which are
only known by the script rather than the underlying Vol P infrastructure) in the accounting packet,
all the AAA attributes that can be included in an accounting request can be sent by using the -a
option. Only the following list of attributes are supported for use in this manner with the -a option,
although there is no sanity checking:

— h323-ivr-out

— h323-ivr-in

— h323-credit-amount
— h323-credit-time

— h323-return-code

— h323-prompt-id

— h323-time-and-day
— h323-redirect-number
— h323-preferred-lang
— h323-redirect-ip-addr
— h323-billing-model
— h323-currency

There is also no sanity check if an attribute is only allowed to be included once. It is the
responsibility of the script writer to maintain such integrity.

aaa authenticate

The aaa authenticate command validates the authenticity of the user by sending the account number
and password to the appropriate server for authentication. This command returns an accept or reject; it
does not support the infotag get aaa-avpair avpair-name command for retrieving information returned
by the RADIUS server in the authentication response.

Syntax
aaa authenticate account password [-a avlistSend][-s servertag][-| legID]

Arguments

Cisco I0S Version 12.3(2)T

account—The user’s account number.
password—The user’s password (or PIN).

-a avlistSend—This argument is a replacement for the existing [av-send] optional argument.
Backward-compatibility is provided.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

- -sservertag—The server (or server group)’sidentifier. This value refers to the method-list-name asin
AAA configuration:

aaa authentication login {default | method-list-name} group group-name
Default value ish323 (backward-compatible).

~

Note Only general-purpose AAA server is currently supported.

- -l leglD—The call leg for the access request. Causes voice-specific attributes (V SAs) associated
with the call leg, such as h323-conf-id, to be packed into the access request.

Return Values
None

Command Completion
When the command has finished, the script receives an ev_authenticate_done event.

Example

aaa authenticate $account $password -a $avlistSend -s $nethod -1 |eg_inconing

Usage Notes
- Typicaly aRADIUS server is used for authentication, but any AAA-supported method can be used.

« If Tcl IVR command debugging is on (see the “ Testing and Debugging Your Script” section on
page 2-8), the account number and password are displayed.

« Account numbers and PINs are truncated to 32 characters, the E.164 maximum length.

« You can use the aaa authentication login and radius-server commands to configure a number of
RADIUS parameters. For more information, see “Authentication, Authorization, and Accounting
(AAA)”, Cisco |OS Security Configuration Guide, Release 12.2, located at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm

» To define avSend, see set avsend, page 3-51.
- If the-l option is not specified, the h323-conf-id attribute may not be included in the access request.

aaa authorize

The aaa authorize command sends a RADIUS authentication or authorization request, and allows the
Tcl IVR script to retrieve information that the RADIUS server includes in its response. The command
can be used multiple times during asingle call (for example, to do the authentication, then to do the
authorization).

When used in combination with the aaa authenticate command, this command provides additional
information to the RADIUS server, such as the destination and origination numbers, after auser has been
successfully authenticated. When used both to authenticate and authorize the user, the values used in
the command's parameters are altered to support each intended purpose. Parameters can be left blank
(null), asillustrated in the examples.

Syntax

aaa authorize account password ani destination {leglD | info-tag} [-a avlistSend] [-s servertag] [-g
GUID]

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Arguments

account—User’s account number.
password—User’s password (or PIN).
ani—Origination (calling) number.
destination—Call destination (called) number.
legl D—ID of the incoming call leg.

info-tag—A direct mapped info-tag mapping to one leg. For more information about info-tags, see
Chapter 4, “Information Tags”.

-a avlistSend—This argument is a replacement for the existing [av-send] optional argument.
Backward-compatibility is provided.

-s servertag—The server (or server group) identifier. This value refers to the method-list-name asin
AAA configuration:

aaa authentication exec {default | method-list-name} group group-name
Default value is h323 (backward-compatible).
-g GUID—Specifies the GUID to use in the authorize operation.

The account and password arguments are the same as those specified in the aaa authenticate command.
The destination and ani arguments provide additional information to the external server.

Return Values
None

Command Completion
When the command finishes, the script receives an ev_authorize_done event.

Examples

aaa authorize $account $password $ani $destination $legid

aaa authorize $account "" $ani "" $legid

aaa authorize $ani "" $ani "" $legid

aaa authorize $account $pin $ani $destination $legid -a avList -s $nethod -t $tenplate

Usage Notes

Cisco I0S Version 12.3(2)T

Additional parameters can be returned by the RADIUS server as attribute-value (AV) pairs. To
determine whether additional parameters have been returned, use the aaa_avpair_exists info-tag.
Then to read the parameters, use the aaa_avpair info-tag. For more information about info-tags, see
Chapter 4, “Information Tags”.

If Tcl IVR commands debugging is on (see the “ Testing and Debugging Your Script” section on
page 2-8), the account number, password, and destination are displayed.

Account numbers, PINs, and destination numbers are truncated at 32 characters, the E.164
maximum length.

If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call iscleared.

You can use the aaa authentication login and radius-server commands to configure a number of
RADIUS parameters. For more information, see “Authentication, Authorization, and Accounting
(AAA),” Cisco |OS Security Configuration Guide, Release 12.2, located at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm

To define avSend, see set avsend, page 3-51.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

call close

The call close command marks the end of the call and frees the execution instance of the script to handle
the next call. This command causes the system to clean up the resources associated with that call. If
conference legs exist, this command destroys the connection and clears all the call legs. If leg
collectdigitsis active on any of the call legs, the digit collection process is terminated and the call is
cleared.

Syntax
call close

Arguments
None

Return Values
None

Command Completion
Immediate

Example

proc act_Di sconnected {} {
call close

}

set FSM any_st at e, ev_di sconnect ed) “act_Di sconnect ed, CALL_CLOSED’

Usage Notes

The call close command marks the end of the call and the end of the script. This command causes the
system to clean up the resources.

clock

This command performs one of several operations that can obtain or manipulate strings or values that
represent some amount of time.

Syntax
clock option arg arg

Arguments
- option—Valid options are:
— clicks—Return a high-resolution time value as a system-dependent integer value. The unit of
the value is system-dependent, but should be the highest resolution clock available on the

system, such as a CPU cycle counter. This value should only be used for the relative
measurement of elapsed time.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

format clockValue -format string -gmt boolean—Converts an integer time value, typically
returned by clock seconds, clock scan, or the atime, mtime, or ctime options of the file
command, to human-readable form. If the -format argument is present the next argument is a
string that describes how the date and time are to be formatted. Field descriptors consist of a %
followed by afield descriptor character. All other characters are copied into the result. Valid
field descriptors are:

%% —Insert a %.

%a—Abbreviated weekday name (Mon, Tue, €etc.).
%A—Full weekday name (Monday, Tuesday, etc.).
%b—ADbbreviated month name (Jan, Feb, etc.).
%B—Full month name.

%c—L ocale specific date and time.

%d—Day of month (01 - 31).

%H—Hour in 24-hour format (00 - 23).

%I|—Hour in 12-hour format (00 - 12).

%j—Day of year (001 - 366).

%m—M onth number (01 - 12).

%M—Minute (00 - 59).

%p—AM/PM indicator.

%S—Seconds (00 - 59).

%U—Week of year (01 - 52), Sunday is the first day of the week.
%w—Weekday number (Sunday = 0).

%W—Week of year (01 - 52), Monday is the first day of the week.
%x—L ocal e specific date format.

%X—L ocale specific time format.

%y—Year without century (00 - 99).

%Y —Year with century (for example, 2002)

%Z—Time zone name.

In addition, the following field descriptors may be supported on some systems. For example, UNIX
but not Microsoft Windows. Cisco |0S software supports the following options:

Cisco I0S Version 12.3(2)T

%D—Date as %m/%d/%y.

%e—Day of month (1 - 31), no leading zeros.
%h—Abbreviated month name.

%n—Insert a newline.

%r—Time as %l :%M:%S %p.

%R—Time as %H: %M.

%t—Insert atab.

%T—Time as %H:%M:%S.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

If the -format argument is not specified, the format string " %a %b %d %H: %M :%S %Z %Y " is used.
If the -gmt argument is present, the next argument must be a boolean, which if true specifiesthat the
time will be formatted as Greenwich Mean Time. If false then the local time zone will be used as
defined by the operating environment.

scan dateString -base clockVal -gmt boolean—Converts dateString to an integer clock value (see
clock seconds). The clock scan command parses and converts virtually any standard date and/or
time string, which can include standard time zone mnemonics. If only atimeis specified, the current
dateisassumed. If the string does not contain atime zone mnemonic, thelocal time zoneis assumed,
unless the -gmt argument is true, in which case the clock value is calculated relative to Greenwich
Mean Time.

If the -base flag is specified, the next argument should contain an integer clock value. Only the date
inthis valueis used, not the time. Thisis useful for determining the time on a specific day or doing
other date-relative conversions.

The dateString consists of zero or more specifications of the following form:

— time—A time of day, which is of the form: hh:mm:ss meridian zone or hhmm meridian zone. If
no meridian is specified, hh is interpreted on a 24-hour clock.

— date—A specific month and day with optional year. The acceptable formats are mm/dd/yy,
monthname dd, yy, dd monthname yy and day, dd monthnameyy. The default year isthe current
year. If the year is less then 100, then 1900 is added to it.

— relative time—A specification relative to the current time. The format is number units and
acceptable units are year, fortnight, month, week, day, hour, minute (or min), and second (or
sec). The unit can be specified in singular or plural form, asin 3 weeks. These modifiers may
also be specified: tomorrow, yesterday, today, now, last, this, next, ago.

The actual date is calculated according to the following steps:

— First, any absolute date and/or time is processed and converted. Using that time as the base,
day-of-week specifications are added.

— Next, relative specifications are used. If a date or day is specified, and no absolute or relative
timeis given, midnight is used.

— Finally, acorrection isapplied so that the correct hour of the day is produced after allowing for
daylight savings time differences.

seconds—Returns the current date and time as a system-dependent integer value. The unit of the
value is seconds, allowing it to be used for relative time calculations. The value is usually defined
as total elapsed time from an “epoch.” The epoch should not be assumed.

Return Values
None

Command Completion

None

Example

set clock_seconds [cl ock seconds]

set time [clock format [clock seconds] -format "%AWE"]
set new_tine [clock format [clock seconds] -format "9%d™]
set time_hh [clock format [clock seconds] -format "%
set date [clock format [cl ock seconds] -format "%/% "]
set new_ date [clock format [clock seconds] -format "%®O']
set week [clock format [clock seconds] -format "ow']

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Usage Notes
None.

command terminate

The command ter minate command ends or stops a previously issued command.

Syntax
command terminate [commandHandl €]

Arguments

commandHandle—The handler handle associated with a handler retrieved by the get
last_command_handle infotag. The leg setup command can be terminated using this verb. For more
information about info-tags, see Chapter 4, “Information Tags.”.

Return Values
This command returns one of the following:

» 0 (pending)—A command termination is initiated.
« 1 (terminated)—The command termination has completed.

- 2(failed)—The command termination verb isnot valid. Either the command argument is not correct,
there is no such command pending, or the termination for that command has already been initiated.

Command Completion

If applied to acall setup verb, anev_setup_done event is returned when the call setup handler terminates.
The status code for this event isls_015: terminated by application request.

Example
command term nate [$commendHandl e]

Usage Notes
The last command handle has to be retrieved before any other command is issued.

connection create

The connection create command connects two call legs.

Syntax
connection create {leglD1 | info-tagl} {leglD2 | info-tag2}

Arguments
- legiD1—The ID of thefirst call leg to be connected.

- info-tagl—A direct mapped info-tag mapping to one call leg. For moreinformation about info-tags,
see Chapter 4, “Information Tags.”

« leglD2—The ID of the second call leg to be connected.

- info-tag2—A direct mapped info-tag mapping to a single second leg. For more information about
info-tags, see Chapter 4, “Information Tags.”

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Return Values
This command returns the following:

» connectionlD—A unique ID assigned to this connection. This ID is required for the connection
destroy command.

Command Completion
When this command finishes, the script receives an ev_create_done event.

Example
set connl D [connection create $l egl D1 $l egl D2]

Usage Notes

- If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call is cleared.

- Connections between two IP legs are not supported. Even if the command seems to execute
successfully, it actually does not work. Doing so could potentially cause problems, asthereis
currently no way to capture the resulting error at the script level. Therefore, it is advisable to avoid
attempting such connections.

connection destroy

The connection destroy command destroys the connection between the two call legs.

Syntax
connection destroy { connectionlD | info-tag}

Arguments
- connectionlD—The unique 1D assigned to this connection during the connection create process.

- info-tag—A direct mapped info-tag mapping to one connection ID. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values
None

Command Completion
When this command finishes, the script receives an ev_destroy done event.

Example
connection destroy $connl D

Usage Notes
Theindividual call legs are not disconnected; only the connection between the call legsis destroyed.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

fsm define

Tcl IVR Commands 1l

The fsm define command registers a state machine for the script. The state machine is specified using a
Tcl array that lists the state event transition along with the appropriate action procedure.

Syntax
fsm define statemachine_array start_state

Arguments

statemachine_array—An array that defines the state machine. The array is indexed by the current
state and current event. The value of each entry is the action function to execute and the state to
move to next. The format of the array entriesis:

set statemachine_array(current_state,current_event) “actionFunction,next_state”

~
Note The current state and event are enclosed in parentheses and separated by a comma without

any spaces. Theresulting action and next state are enclosed in quotation marks and separated
by a comma, spaces, or both.

start_state—The starting state of the state machine. Thisisthe state of script when anew call comes
in for this script.

Return Values
None

Command Completion

Immediate

Example

2

St at e Machi ne

Hoe o m e e e e e e e e e e e e

set FSM CALL_INIT, ev_setup_i ndication) “act_Setup, DEST_COLLECT”

set FSM DEST_COLLECT, ev_di sconnect _done) “act_DCDone, CALL_SETTI NG’
set FSM DEST_COLLECT, ev_di sconnect ed) “act_DCDi sc, CALL_DI SCONNECTI NG’
set FSM CALL_SETTI NG, ev_cal | set up_done) “act_PCDone, CALL_ACTI VE”

set FSM CALL_SETTI NG, ev_di sconnected) “act_PCDi sc, CALL_SETTI NG_ WAl T"

fsmdefine FSM CALL_INIT

fsm setstate

The fsm setstate command allows you to specify the state to which the FSM movesto after completion
of the action procedure.

Syntax
fsm setstate StateName

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

handoff appl

Arguments

- SateName—The state that the FSM should move to after the action procedure completes its
execution. This overrides the next state specified in the current state transition of the FSM table.

Return Values
None

Command Completion
None

Example

#Check for DNIS, if there is DNIS you want to go to Call setup right away
set leglD [infotag get evt_|egs]
set destination [infotag get |eg_dnis $l eglD]
if {destination !="“"} {
cal | Proceeding $l egl D
set calllnfo(alertTinmer) 30
call setup $destination calllnfo |eg_inconng
#Moves to CALL_SETTING state
fsmsetstate CALL_SETTI NG
} else {
| eg setupack $leglD
pl aytone $l egl D TN_DI AL
set DCl nfo(dial Plan) true
Assunption: As per the state machine nmoves to DI G T_COLLECT}
leg collectdigits $l egl D DCl nfo

}

Usage Notes

» Thiscommand allows the action procedure to specify the state that the FSM should move to (other
than the state specified in the FSM table).

- If you do not use this command, the state transition follows the state machine as defined in the FSM
table.

The handoff appl command hands off the specified call leg (and all call legs connected to it) to the
specified application and does not expect it to return.

Syntax
handoff appl {leglD | info-tag} app-name [argstring]

Arguments
« leglD—The ID of the call leg to be handed off.

- info-tag—A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

- app-name—The name of the application to which the call leg is being handed off.
- argstring—A list of strings that are passed to the other application.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T

Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Return Values
None

Command Completion
None

Example

handoff appl |eg_outgoi ng new app “Dl AL_PEER=25"
handof f appl |eg_outgoing nel ody_app “SONG=hel | o_wor | d. au; VOLUMVE=25"

Usage Notes
» This command can be used only with applications that are preconfigured on the gateway.

» Because thiscommand does not expect the call legsto be returned, you could call thiscommand and
then call call close and thereby free the execution instance of the script to process the next incoming
call.

» With this command, the destination application cannot perform a handoff return on this call leg.

- |If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call iscleared.

handoff callappl

The handoff callappl command hands off the specified call leg (and all call legs connected to it) to the
specified application and can wait for the leg to be returned by the destination application.

Syntax
handoff callappl {legID | info-tag} app-name [argstring]

Arguments
« leglD—The ID of the call leg to be handed off.

- info-tag—A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

» app-name—The name of the application to which the call leg is being handed off.
- argstring—A list of strings that are passed to the other application.

Return Values
None

Command Completion

When the application has completed its processing, the script receives an ev_returned event. This event
indicates that all the call legs have been accounted for. This means that they have either been returned
or disconnected.

Example

handoff cal | appl |eg_outgoi ng other_app “Dl AL_PEER=25"
handoff cal | appl |eg_outgoing nel ody_app “SONG=hel | o_worl d. au; VOLUVE=25"

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Usage Notes
» This command can be used only with applications that are preconfigured on the gateway.
» When the command returns, all call legs have been handed off to the specified application. The

destination application then has control of the call legs and can either return the call legs or
disconnect them.

» In some cases, the application may return new call legs. For example, if leg A and leg B are handed
off to the application, the application may disconnect leg A, create a new leg C and conference it
with leg B. As aresult, when returning leg B, both leg C and leg B are returned. Any attempt to
return leg C alone would fail, because leg C has no return information saved.

- If the script hands off two conferenced |egs and the destination application destroys the connection,
the destination application will have to return the two call legs separately. In this case, the call legs
will arrive as two separate ev_returned events. Therefore, when the script receives an ev_returned
event, theevt_iscommand_done info-tag can be used to determine whether all the call legs that were
sent to the destination application have been accounted for.

- If ascript issues a handoff callappl on one or more call legs and then issues a call close, the
execution instance is not freed to handle the next call until all legs that were handed off are either
returned or disconnected by the destination application.

« With this command, the destination application can perform a handoff return on this leg to return
it to the sender.

- |If the specified call legisinvalid, the script terminates, displays an error to the console, and the call
is cleared.

handoff return

The handoff return command returns the call leg (and all connected call legs) to the application that
handed the specified call leg to this application using the handoff callappl command.

Syntax
handoff return {leglD | info-tag} [argstring]

Arguments
» leglD—The ID of the call leg to be handed off.

- info-tag—A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

- argstring—A list of strings that are passed to the other application.

Return Values
None

Command Completion
Immediate

Example

handoff return | eg_outgoing “RESULT=25"
handoff return | eg_outgoing “SONG=hel | o_worl d. au; VOLUVE=25"

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

infotag get

Tcl IVR Commands 1l

Usage Notes

» When the command returns, all call legs have been returned to the specified application and are no
longer a part of the execution instance of the script. The script receiving these call legs receives an
ev_returned event.

» Thiscommand can be used only on call legs that were handed to the script using the handoff
callappl command. If you issue this command on call legsthat were created by the script or call legs
that were handed off using the handoff appl command, the script terminates with error output.

- |If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call is cleared.

The infotag get command retrieves information from a call leg, call, script, or system. The information
retrieved is based on the info-tag specified.

Syntax
infotag get info-tag [parameter-list]

Arguments
- info-tag—The info-tag that indicates the type of information to be retrieved. For more information
about info-tags, see Chapter 4, “Information Tags.”.

- parameter-list—(Optional, depending on the info-tag) Thelist of parametersthat further definesthe
information to be retrieved.

Return Values
The information requested.

Command Completion
Immediate

Example

set dnis [infotag get |eg_dnis]
set | anguage [infotag get ned_| anguage]
set leg_list2 [infotag get |eg_|egs]

Usage Notes

Some info-tags have specific scopes of access. For example, you cannot call evt_dcdigitswhile handling
the ev_setup_done event. In other words, if the previous command is leg setup and the ev_setup_done
event has not yet returned, then you cannot execute an infotag get evt_dcdigits command, or the script
terminates with error output. For more information, see Chapter 4, “Information Tags.”.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

infotag set

leg alert

The infotag set command allows you to set information in the system. This command works only with
info-tags that are writable.

Syntax
infotag set {info-tag [parameters]} value

Arguments

» info-tag—The information to set. A list of info-tags that can be set is found in Chapter 4,
“Information Tags,” and are designated as “ Write.”

- parameters—A list of parameters that is dependent on the info-tag used.
- value—The value to set to. This is dependent on the info-tag used.

Return Values
None

Command Completion
Immediate

Example

infotag set med_| anguage prefix ch
infotag set ned_l ocation ch 0 tftp://ww.cisco.conm nedi afil es/ Chi nese

Sends an alert message to the specified leg.

Syntax
leg alert {legID | info-tag} [-p <prog_ind value>] [-s <sig_ind_value>] [-g <GTDHandle>]

Arguments
» leglD | info-tag—Points to the incoming leg to send the progress message to.

» -s<sig_ind_value>—The value of the call signal indication. The value is forwarded asis.
e -p <prog_ind_value>—The value of the call progressindication. The value is forwarded asis.

e -g<GTD handle>—The handle to a previously created GTD area. If not specified, the default isto
send aring back signal.

Return Values
None.

Command Completion
Immediate.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Examples

| eg setupack | eg_incom ng

leg alert leg_inconming -s 1-g gtd_progress_handl e
| eg connect |eg_incom ng

Usage Notes

- Applications that terminate a call can insert aleg alert before connecting with the incoming leg to
satisfy the switch.

- For theleg alert command to be successful, the leg must be in the proper state. The following
conditions are checked on the target leg:

— A leg setupack has been sent.
— Noleg alert has been sent.

- If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the cal is cleared.

leg callerid
Sends an updated call number and name after a transfer.

Syntax
leg callerid {legl D}

Arguments
» leglD—Points to the incoming leg to send the progress message to.

Return Values
None.

Command Completion
Immediate.

Examples

set paran(nane) “Xee”
set paran(nunber) “4088531936”
leg callerid param | egXto

set paran(nanme) “Xto”

set paranm(nunber) “4088531645"
leg callerid param | egXee

Usage Notes
If the call leg is not connected, this verb throws a script error.

leg collectdigits

Theleg collectdigits command instructs the system to collect digits on aspecified call leg against adial
plan, alist of patterns, or both.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Syntax

leg collectdigits{legl D | info-tag} [param [match]]

Arguments
« leglD—The ID of the call leg on which to enable digit collection.

- info-tag—A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

- param—An array of parametersthat defines how the digits are to be collected. The array can contain
the following:

param(abortK ey)—Key to abort the digit collection. The default is hone.
param(inter DigitTimeout)—Interdigit timeout value in seconds. The default is 10.
param(initialDigit Timeout)—Initial digit timeout value in seconds. The default is 10.

param(interruptPrompt)—Whether to interrupt the prompt when a key is pressed. Possible
values are true and false. The default is false.

param(terminationK ey)—Key that terminates the digit collection. The default is none.

param(dial Plan)—Whether to match the digits collected against a dial plan (or pattern, if one
is specified). Possible values are true and false. The default is false.

param(dialPlanTerm)—Match incoming digits against adial plan and, even if the match fails,
continue to collect the digits until the termination key is pressed or a digit timeout occurs.
Possible values are true and false. The default is false.

param(maxDigits)—Maximum number of digits to collect before returning.

param(enableRepor ting)—Whether to enable digit reporting when returning. Possible values
aretrue and false. The default isfalse. After you have enabled digit reporting, the script receives
an ev_digit_end event when each key is pressed and released.

param(ignorel nitial Ter mK ey)—This disallows or ignores the termination key as the first key
in digit collection. The default is false.

- match—An array variablethat containsthelist of patternsthat determineswhat the leg collectdigits
command will look for.

Return Values

None

Command Completion

When the command finishes, the script receives an ev_collectdigits done event, which contains the
success or failure code and the digits collected. For more information about the success and failure
codes, see the “ Status Codes’ section on page 5-4.

Examples
Example 1 - Collect digits to match dial plan:

set parans(interruptPronpt) true
set parans(dial Pl an) true
leg collectdigits $legl D parans

Example 2 - Collect digits to match a pattern:

set pattern(1) "99..... g**
set pattern(2) "88..... g**
leg collectdigits $legl D parans pattern

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Usage Notes

leg connect

If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call iscleared.

By default, the script does not see any digits, because digit reporting is disabled on all call legs. For
the script to seeindividual digit events, digit reporting must be turned on using the leg collect digits
command with parm(enableReporting) set to TRUE.

If enableReporting is set to TRUE, the command finishes and digit reporting remains on (allowing
the script to receive the digits pressed). Thisisuseful if you want the script to collect digits by itself
or if you want to look for longpounds.

If theleg collectdigits command isbeing issued just for enabling digit reporting, and is not expected
to collect digits or patterns, the command will finish after it has turned reporting on. The script will
receive the ev_collectdigits_done event with a status of cd_009.

The initial timeout for collecting digits is 10 seconds and the interdigit collection timeout is

10 seconds. If the digit collection times out, a timeout status code along with the digits collected so
far isreturned. You can change the timeout values at the voice port using the timeoutsinitial and
timeout interdigit commands.

When multiple match criteria are specified for leg collectdigits, the matching preference order is
maxDigits, dialPlan, pattern.

The preference, maxDigits, is considered to be a special pattern.

This special-pattern matching terminates and is considered to be a successful match if one of the
following conditions occur:

— The user dials the maximum number of digits.

— The user presses the termination key, when set.

— A time-out occurs after the user has dialed afew digits.
When this happens, a cd_005 status code is reported.

The leg connect command sends a signaling level CONNECT message to the incoming call leg.

Syntax
leg connect {leglD | info-tag}

Arguments

leglD—The ID of the incoming call leg to which the connect signaling message is sent.

info-tag—A direct mapped info-tag mapping to one or more incoming legs. For more information
about info-tags, see Chapter 4, “Information Tags.”

Return Values
None

Command Completion

Cisco I0S Version 12.3(2)T

Immediate

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

~

Note

Examples

| eg connect |eg_incom ng
| eg connect $leglD

Usage Notes
- If the specified call leg is not incoming, the script terminates and displays an error to the console,
and the call is cleared.

- If theinfo-tag specified maps to more than one incoming call leg, a call connect message is sent to
all the incoming call legs that have not already received a call connect message.

- If the state of the specified call leg preventsit from receiving a call connect message (for example,
if the state of the leg is disconnecting), the command fails.

- If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the call is cleared.

For incoming ISDN call legs, a setupack, proceeding, or alert message must be sent before the connect
message. Otherwise, the script will receive an ev_disconnected event and the incoming leg will be
disconnected.

leg consult abandon

This command is used to send a call-transfer consultation abandon request on the specified leg.
Depending on the underlying protocol, the gateway may send a message to the endpoint. Typically, the
endpoint cleans up its state and locally generates an error response indicating that the call transfer has
failed.

Syntax
leg consult abandon leglD

Arguments
legiD—The ID of the call-leg to transfer-target endpoint.

Return Values
The command returns one of the following:

» 0 (success)—The abandon message successfully sent on the call-leg

- 1 (failed, invalid state)—The call-leg has not sent a consult request message earlier. It isinvalid to
send a consult-abandon message on a leg that has not sent a consult-request message.

- 2 (failed, protocol error)—The abandon message could not be sent due to a protocol error.

Example

| eg consult abandon $targetleg
set retcode [l eg consult abandon $consultLeg]

Command Completion
Immediate

Related Events
None

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

leg consult response

This command is used to send a call-transfer consultation identifier response on the specified leg. A
consult-id is automatically generated. Depending on the underlying protocol, the gateway either sends a
message with the generated consult-id on the specified leg or ignores this command.

Syntax
leg consult response legID {[-i consultID][-t transferDestNum] | -¢ ‘xxx'}

Arguments
» leglD—ID of the call-leg to transferrer endpoint.
» -i consultlD—consultation-id (optional)

» -t transferDestNum—transfer-target number. Diverted-to number could be used here when the
transfer-target is locally forwarded to another number. If not specified, the legl D’s corresponding
outgoing call leg’'s calledNumber is used. If an appropriate outgoing call leg does not exist, the
leglD’s calledNumber is used. (optional)

e -c'xxx’—Where ‘xxx’ is aconsult failure code (optional)
— 001—consultation failure
— 002—consultation rejected

Return Values
When the command finishes, the script receives an ev_consultation_done.

Example

| eg consult response |leg_inconing -i $tcl_consultid
| eg consult response $xorCalllLeg -t $newTarget Num
| eg consult response leg_incomng -c 2

Command Completion
Immediate

Related Events
ev_consult_request

leg consult request

This command is used to send a call-transfer consultation identifier request on the specified leg.
Depending on the underlying protocol, the gateway will send a message to the endpoint or the gateway
itself generates the identifier.

Syntax
leg consult request leglD

Arguments
leglD—The ID of the call-leg to transfer-target endpoint.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Return Values
None

Example

| eg consult request $targetleg

Command Completion
When the command finishes, the script receives an ev_consult_response.

Related Events
ev_consult_response

leg disconnect
The leg disconnect command disconnects one or more call legs that are not part of any connection.

Syntax
leg disconnect {legID | info-tag} [cause_code]

Arguments
« |leglD—ID of the call leg.

- info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”.

» cause_code—An integer ISDN cause code for the disconnect. It is of the form di-xxx or just xxx,
where xxx isthe ISDN cause code.

N
Note Tcl IVR does not validate cause_code. For non-DID calls, the optional cause_code

parameter does not have any effect on incoming telephony legs when both of the following
conditions are true:

1. The leg setupack command has been issued for thisleg.
2. The leg has not yet reached the connect state.

In this case, the cause_code parameter is ignored and the leg is disconnected using cause
code 0x10, “Normal Call Clearing.”

Return Values
None

Command Completion
When the command finishes, the script receives an ev_disconnect_done event.

Examples

| eg di sconnect |eg_inconm ng

| eg di sconnect | eg_outgoing

| eg di sconnect |eg_al

| eg di sconnect 25

| eg di sconnect $callld

| eg disconnect [info-tag get evt_|egs]

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Usage Notes

If the specified call legisinvalid or if any of the specified call legs are part of a connection
(conferenced), the script terminates with error output, and the call closes.

When the script receives an ev_disconnected event, the script has 15 seconds to clear the leg with
the leg disconnect command. After 15 seconds, atimer expires, the script is cleaned up, and an error
message is displayed to the console. This avoids the situation where a script might not have cleared
aleg after a disconnect.

leg disconnect_prog_ind

The leg disconnect_prog_ind command sends a disconnect message with the specified progress
indicator value to the specified leg.

Syntax
leg disconnect_prog_ind {legID | info-tag} [-Cc <cause_code>][-p <prog_ind value>]

Arguments

Cisco I0S Version 12.3(2)T

legl D—ID of the call leg.

info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”.

-c <cause_code>—An integer ISDN cause code for the disconnect. It is of the form di-xxx or just
xxX, where xxx isthe ISDN cause code.

-p <prog_ind value>—The value of the call progress indication. Valid values are:
- 1—PROG_NOT_END_TO END_ISDN
- 2—PROG_DEST_NON_ISDN
— 4—PROG_RETURN_TO_ISDN
- 8—PROG_INBAND
— 10—PROG_DELAY_AT_DEST

Return Values
None

Command Completion
Immediate.

Examples
| eg di sconnect_prog_ind | eg_incomng -c19 -p8

Usage Notes

Applications that terminate a call can insert aleg disconnect_prog_ind before playing an
announcement toward the incoming leg.

This command is normally used on an incoming call leg before it reaches the connect state. Using
this command on an outgoing call leg may result in an error or unexpected behavior from the
terminating PSTN switch. Using this command on an incoming call leg that is already connected
may result in an error or unexpected behavior from the originating PSTN switch.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

leg facility

The leg facility command originates a facility message.

Syntax
leg facility {leglD | info-tag} -s ss Info -g gtd_handle -c

Arguments
« leglD—The call leg ID the facility message is sent to.

- info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”.

- -sss Info—Anarray containing parametersthat are passed to the stack to build the facility message.
- -ggtd_handle—Sends a new facility using the specified GTD handle.

- -c—Forwardsthereceived facility message asis. Used when forwarding areceived facility message
to conferenced call legs. The raw message in the previous facility message is copied to the new
facility message and updated.

Return Values
None

Command Completion
Immediate

Examples
set ssinfo (ssID) “ss_ntid”
leg facility leg_incomng -s sslnfo

object create gtd gtd_inr INR
obj ect append gtd gtd_inr iri.1l.inf 1
leg facility leg_incomng -g gtd_inr

Usage Notes

If the ss_Info option is used, a mandatory parameter, sslD, must be set to indicate the service type. The
value for malicious call identification (MCID) messagesis ss_mcid.

leg proceeding

The leg proceeding command sends a call proceeding message to the incoming call leg. The gateway is
responsible for translating this message into the appropriate protocol message (depending on the call
leg) and sending them to the caller.

Syntax
leg proceeding {leglD | info-tag}

Arguments
- |legiD—The ID of the incoming call leg.

- info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

leg progress

Tcl IVR Commands 1l

Return Values
None

Command Completion
Immediate

Example

| eg proceeding | eg_incom ng

Usage Notes
- If the specified call leg is not incoming, this command clears the call.

- Ifleg_incoming is specified and there is more than oneincoming call leg, acall proceeding message
is sent to all the incoming call legs that have not already received a call preceding message.

- If the state of the specified call leg preventsit from receiving a call proceeding message (for
example, if the state of the call leg is disconnecting) the command fails.

- If acall proceeding message has already been sent, this command is ignored. If IVR debugging is
on (see the “Testing and Debugging Your Script” section on page 2-8), the command that has been
ignored is displayed.

- If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the cal is cleared.

Sends a progress message to the specified leg.

Syntax
leg progress{legID | info-tag} [-p <prog_ind_value>] [-s<sig_ind_value>] [-g <GTDHandle>]

Arguments
- leglD | info-tag—Points to the incoming leg to send the progress message to.

e -s<sig_ind_value>—The value of the call signal indication. The value is forwarded asis.
e -p <prog_ind_value>—The value of the call progress indication. Valid values are:

- 1(PROG_NOT_END_TO END_ISDN)

- 2 (PROG_DEST_NON_ISDN)

- 4 (PROG_RETURN_TO_ISDN)

— 8 (PROG_INBAND)

— 10 (PROG_DELAY_AT_DEST)
e -g<GTD handle>—The handle to a previously created GTD area.

Return Values
None.

Command Completion
Immediate.

| Doc Version 12.3.2

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Examples

|l eg progress leg_inconmng -p 8 —g gtd_progress_handl e

Usage Notes
- Applicationsthat terminate a call can insert aleg progress before playing an announcement toward
the incoming leg.

- If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the call is cleared.

Note For incoming ISDN call legs, a setupack, proceeding, or alert message must be sent before the connect
message. Otherwise, the script will receive an ev_disconnected event and the incoming leg will be
disconnected.

leg setup
The leg setup command requests the system to place a call to the specified destination numbers.

Syntax
leg setup {destination | array-of-destinations} callinfo [leglD | info-tag]

Arguments
» destination—The call destination number.

- array-of-destinations—An array containing up to three call destination numbers.

- callinfo—An array containing parameters that determine how the call is placed. See the set callinfo
command for possible values.

- legID—Thecall leg ID to conference if the call setup succeeds. For call transfer, thisis usually the
call leg that was conferenced with the leg that received the ev_transfer_request event. Thisleg
should not be part of any conference.

- info-tag—A direct mapped info-tag mapping to one incoming leg. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Value
None

Command Completion
When the command finishes, the script receives an ev_setup_done event.

Example

set calllnfo(alertTinmer) 25

| eg setup 9857625 calllnfo | eg_incom ng

set destinations(1l) 9787659

set destinations(2) 2621336

| eg setup destinations calllnfo | eg_incom ng

Usage Notes

- |If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call iscleared.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Cisco I0S Version 12.3(2)T

Tcl IVR Commands 1l

If asingle destination number is specified, the leg setup command places a call to that destination
number. When the destination phone rings, the incoming call leg is alerted (in-band or out-of-band,
as appropriate). When the destination phone is answered, the call is connected, and the leg setup
command returns an ev_setup_done event. If the call fails to reach its destination through the dial
peer, the leg setup command tries the next dial peer until all dial peers that match the destination
have been tried. (Thisis called rotary hunting.) At that point, the leg setup command fails with a
failure code (an ev_setup_done event with a status code of alert timeout). For more information
about the failure codes, see the “ Status Codes” section on page 5-4.

If multiple destination numbers are specified, the leg setup command places the call to al the
specified numbers simultaneously (causing all the destination phones to ring at the same time).
When the first destination phone is answered, the call is connected and the remaining calls are
disconnected. (Thisis called blast calling.) Therefore, when you receive the ev_setup_done event
and then issue an infotag get evt_legs info-tag command, the incoming leg is returned.

A script can initiate more than one leg setup command, each for a different call leg ID. After acall
setup message has been issued for a particular call leg 1D, you cannot issue another leg setup
command for this call leg ID until the first one finishes.

If aprompt is playing on the call leg when the call setup is issued, the leg setup proceeds and the
destination phonesring. However, the caller does not hear the ring tone until the prompt has finished
playing. If, during the prompt, the destination phone is answered, the prompt is terminated and the
call is completed.

If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call is cleared.

Theleg ID used in theleg setup command should not be conferenced. Otherwise, the command fails
and the script terminates.

If successful, this command returns the following:

— leglD—The unique IDs assigned to the two legs that are part of the connection. The ID of the
incoming leg might not be what you passed as the incoming leg. The incoming leg might have
been cleared and a new incoming leg conferenced. Thisis an exception case that might happen
due to supplementary services processing or H.450 services.

— connectionlD—A unique ID assigned to this connection. ThisID isrequired for the connection
destroy command.

The above information can be obtained from evt_legs and evt_connections info-tags. For more
information about info-tags, see Chapter 4, “Information Tags.”

If unsuccessful, this command returns nothing or asingle leg ID. You may get the incoming leg ID
because the incoming leg that was passed may have been disconnected. These are exception cases
that may happen due to supplementary services processing or H.450 services.

The script can terminate a pending call setup by issuing the command ter minate verb. See the
command terminate section for more information.

L eg setup cannot use aleg that has adialog running in its [leglD | info-tag] parameter.

The[leglD | info-tag] isan optional parameter. Tcl 1VR applications can initiate aleg setup without
referencing anincoming leg. Thisability can beuseful in applications such asacallback application.
After the leg setup successfully completes, the application can connect the new leg with an existing
leg using the connection create verb.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

» When aleg setup $destination paramleg_incoming command is executed with a destination number
that is different from the number defined by param(destinationNum), leg setup places the call based
on the dial plan, but overwrites the destination number in the signaling | E with the number defined
by param(destinationNum). The gateway matches the outbound dial peer with the destination
number, but places the call to the number defined by param(destinationNum).

leg setup_continue

Theleg setup_continue command allows the application to interact with the system during setup. This
command isused toinitiate asetup to an endpoint address or to | et the system continueits action after an event
interruptsthe call processing. Typically, the application usesthisverb after it receivestheresult of the address
resolution or acall signal.

N,
Note The application can stop the leg setup by using the “handler terminate’ verb.
Syntax
leg setup_continue <command handle> [-a <endpointAddress | next>] [-d <dialpeerHandle>] [-c
<calllnfo>]
Arguments

- command handle—The call leg id (incoming or outgoing).

» -a <endpointAddress|next>— ndicates to the system to initiate the setup with a particular endpoint
address or the next endpoint address. The initial addressistypically the primary endpoint address. If the
application specifies ‘next’ after it receives the address resolution results, the first (primary) endpoint
addressis used.

» -d <dialpeerHandle>—Specifies the dialpeer handle to use for the setup.

» -c<calllnfo>—If thisoptional parameter is used, the application passes the calllnfo array for usein the
endpoint setup. Currently, the following parameters can be updated on a per-endpoint setup basis:

— originationNum

— originationNumToN

— originationNumPI

— originationNumsSl|

See set callinfo for more information.

Return Values
None.

Command Completion

If the command is used to initiate the setup to an endpoint address, when it finishes, the script receives
an ev_setup_done event if successful or an ev_disconnect if the setup fails.

If the command is used to let the system continue its action after an event interrupts the call processing,
it finishes immediately.

Examples

| eg setup_continue $commndHandl e -a next —g gtd_al ert_handl e

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVRAPIC

ommand Reference

leg setupack

~

Note

Cisco I0S Version 12.3(2)T

Tcl IVR Commands 1l

Usage Notes

» Toretrieve the command handle associated with the leg setup, the application can use the infotag
get evt_last_event_handle.

- Theleg setup_continue should not be used if the address resolution fails with a status code other
than ar_000. In such cases, the application may issue a new leg setup command with another dial
peer.

- Other fields of the callInfo structure, if set, are ignored.

« New calllnfo parameter values will continue to be used for subsequent endpoint setups until
changed.

Theleg setupack command sends a setup acknowledgement message on the specified incoming call leg.

The ISDN state machine actually connects the incoming call on a setup acknowledgement.

Syntax
leg setupack {leglD | info-tag}

Arguments
« leglD—The ID of the call leg to be handed off.

- info-tag—A call leg info-tag that maps to one or more incoming legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values
None

Command Completion
Immediate

Example

| eg setupack | eg_incom ng

Usage Notes

- Theleg setupack command can be used only oncein aTcl IVR application. Any application that
executes this command more than once will abort.

- If the specified call leg is not an incoming call leg, this command clears the call.

- If leg_incoming is specified and there are multiple incoming call legs, a setup acknowledgement is
sent to all the call legs that have not been previously acknowledged.

» When the leg setupack command is applied to an incoming ISDN call leg, the underlying ISDN
protocol stack sends a proceeding message followed by a connect messge to the originating ISDN
switch. Thisis done to establish the voice path so the voice application is able to collect digits.

- The specified call leg must bein theinitial call state. If a setupack, proceeding, progress, alerting,
or connect messsage has already been sent on the specified call leg, the script terminates and
displays an error to the console, and the call is cleared.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

leg transferdone

This command indicates the status of the call transfer on a call-leg and, depending on the status, may
send a disconnect or facility message to the call leg.

Syntax
leg transferdone {legID | info-tag} transfer StatusCode

Arguments
« leglD—The ID of the call-leg

- transfer SatusCode—Success/Failure. See Transfer Status for alist of possible values.

Return Values
The command returns one of the following:

» 0 (success)—Success

- 1 (failed, unsupported)—The signaling protocol associated with the specified leg is not capable of
carrying this information. Thiswill not trigger a script error.

Example

| eg transferdone leg_incomng ts_011
set retcode [l eg transferdone |eg_incom ng ts_000]

Command Completion
For a success return value, the command finishes by sending ev_disconnected to the script.

Usage Notes

If the specified call leg isinvalid for this operation, the script terminates with error output, and the call
closes.

leg vxmldialog

The leg vxmldialog command initiates a VoiceXML (VXML) dialog on the specified leg. The markup
for the dialog to be directed at the leg is specified either by a URI or by an actual markup as a string
parameter. The script can also pass a list of variables as parameters. These variables are available, by
copy, to the VXML dialog session.

When aV XML dialog is active on aleg, no other operations or commands are permitted on the leg
except for the command terminate and leg vxmlsend commands. If the VXML dialog completes or
terminates, either normally or abnormally, an ev_vxmldialog_done event will be received by the script
and an appropriate status code, indicating the reason for termination, can be retrieved through the
evt_status information tag.

If both the -u and -v options are specified, theinline VXML dialog executesin the -v option and uses the
-u URI asthe default base URI asif the inline code was downloaded from there. A VXML dialog refers
the entire VXML session that isinitiated on aleg by aleg vxmldialog command, starting with an initial
inline document or URI, and may span through multiple documents during the course of the
conversation.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3

Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Initiating a VXML dialog segment on individual call legs from within a Tcl application is called hybrid
scripting. Hybrid scripting differs from the concept of application handoff, where the call leg is
completed and handed off to another application, then loses control of the leg. For more information on
call handoff, refer to Call Handoff in Tcl, page 1-5. For more information on hybrid scripting, refer to
Tcl/VXML Hybrid Applications, page 1-6

Syntax
leg vxmldialog <leglD> -u <dialog-uri> [-p <param-array>] [-v <dialog-markup-string>]

Arguments
» leglD—The ID of the call leg to be handed off.
- dialog-uri—A URI to retrieve the dialog markup from or to use as a base URI when used with the
-v option.

- param-array—A Tcl array containing the list of parameters to pass to the dialog markup. The
VXML session can access these parameters through session variables of the form
COM.Ci SCO.params.xxxxxx, where xxxxxx was the index in the Tcl array array. The values of the Tcl
array variables will be available to the VXML application astext strings. The only exception to this
ruleiswhen a Tcl array variable contains memory ram://URI, pointing to an audio clip in memory.
In this case, the audio clip will be available to the VXML document as an audio clip object.

- dialog-markup-string—A string containing the VXML markup specifying the dialog to initiate on
the leg.

Return Values
None

Command Completion
ev_vxmlidialog_done

Example
I eg vxm di al og | eg_i ncomi ng

Usage Notes
« The VXML dialog can be terminated using the command terminate command.
» When the dialog command is active on aleg, other Tcl VR command operations, like medial play,

leg collectdigits, and leg setup, areillegal. If these commands are executed, the application errors
out and terminates as a Tcl 1VR script error. The VXML dialog also terminates.

- The<transfer>tagis not supported when VXML isrunning in the dialog mode. If the VXML dialog
executes a <transfer> tag, an error.unsupported.transfer event is thrown to the VXML interpreter.

- Froma VXML dialog, events can be sent to Tcl by usingthe com.cisco.ivr.script.sendevent object.
For more information on sendevent objects, refer to SendEvent Object, page 1-8.

| Doc Version 12.3.2

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

leg vxmlsend

The leg vxmlsend command throws an event at an ongoing VoiceXML (VXML) dialog on the leg. The
event thrown to the VXML dialog is of the form <event-name>. The event can carry parameters
associated with it and are specified by <param-array>. The Tcl associative array contains the list of
parametersto send to the dialog along with the event. Theindex of the array isthe name of the parameter
as accessible from the VXML dialog and the value is the value of the parameter as accessible from the
VXML dialog.

These parameters are available to the VXML script through the variable_message and is an object
containing all the Tcl array indexes as subelements of the message object. If thereisnot aVXML dialog
executing on the leg, this command simply succeeds and is ignored.

Syntax
leg vxmlsend <leglD> <event-name> [-p <param-array>]

Arguments
« leglD—The ID of the call leg to be handed off.

« event-name—Name of the event to throw to the VXML dialog.

- param-array—A Tcl array containing alist of parametersto passto the ongoing VXML dialog. The
VXML session can access these parameters when the thrown VXML event is caught in a catch
handler. The parameters are accessible through the _message.params.xxxxxx variable, which is
catch-handler scoped and therefore available within the catch handler. The values of the Tcl array
variables are available to the VXML application as text strings. The only exception to thisruleis
when a Tcl array variable contains memory ram:// URI pointing to an audio clip in memory. In this
case the audio clip is available to the VXML document as an audio clip object to the VXML
document.

Return Values
None

Command Completion
Immediate

Example
I eg vxm send | eg_i ncom ng $event - nane

Usage Notes
None

The log command originates a syslog message.

Syntax
log -s<CRIT | ERR | WARN | INFO> <message text>

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Cisco I0S Version 12.3(2)T

Tcl IVR Commands 1l

Arguments

-s<CRIT | ERR| WARN | INFO>—The severity of the message.
— CRIT—Critica
— ERR—Error message (default)
- WARN—Warning message

INFO—Informational message

message text—The body of the message. Use double quotes or braces to enclose text containing
spaces or special characters.

Return Values
None

Command Completion
Immediate

Examples

set msgStr “MCID request succeeded”
append msgStr [clock format [cl ock seconds]]
| og $nsgStr

Usage Notes

The log command uses the |OS message facility to send the message. Except for critical messages,
rate limitations are applied to the emission of 1VR application log messages. The minimum time
intervals between emissions of the same message are as follows:

- ERR—1 second
— WARN—S5 seconds
— INFO—30 seconds
A message is considered the same if the application issues alog command with the same severity.

When performing the rate-limitation, the |OS message facility takes the emissions of all IVR
applications into consideration. If a message cannot tolerate the rate limitation, use the CRIT
severity level.

The message text should be as clear and accurate as possible. The operator should be able to tell
from the message what action should be taken.

The system appends a new line character after the message, so there is no need to use a new line
character.

Use the log message facility to report errors. Use the puts command for debugging purpose.

L og messages can be sent to a buffer, to another TTY, or to logging servers on another system. See
the 10S Troubleshooting and Fault Management logging command for configuration options.

Sending a large number of log messages to the console can severely degrade system performance.
L og messages sent to the console may be suppressed by the logging console <level> CLI command.
Alternatively, the console output can be rate limited by using the logging rate-limit console CLI
command. To disable logging to the console altogether, especially if logging is already directed to
a buffer or a syslog server, use the no logging console command.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

media pause

The media pause command temporarily pauses the prompt that is currently playing on the specified call
leg.

Syntax
media pause {legID | info-tag}

Arguments
- legID—The ID of the call leg to which to pause play of the prompt.

- info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values
None

Command Completion

This command has immediate completion. However, the script should be prepared to receive an
ev_media_done event if the command fails. An ev_media _done event is not generated when this
command is successful.

Example

nedi a pause $l eglD

Usage Notes

If the specified call legisinvalid, the script terminates and displays an error to the console, and the call
is cleared.

media play
The media play command plays the specified prompt on the specified call leg.

Syntax
media play {legID | info-tag} url-list

Arguments
» legID—The ID of the call leg to which to play the prompt.

- info-tag— A direct mapped info-tag mapping to exactly one leg. For more information about
info-tags, see Chapter 4, “Information Tags.”.

e url-list—The URLSs of the prompts to be played. The value of url-list can be alist of URLs for
individual prompts or alist of strings, each of which isacollection of URLs. The URL can point to
aprompt from Flash memory, an FTP server, a TFTP server, or an RTSP prompt. The strings could
be dynamic prompts, in which case they are strings that describe the dynamic prompt using a special
notation format to specify what to play and in what language. See “Usage Notes” below.

» @C<string>—Plays out the alphanumeric characters one by one. For example, @Ccsco will play
“C"“S" “C" “O". The supported inputs are the printable ASCII character set.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

- %Wday_of week—Plays out the day of week prompt. For example, %w1 will play “Monday”. The
values 1-7 represent Monday to Sunday.

» %Ttime_of_day—Accepts an 1SO standard time format and plays out the time. For example,
%T131501 will play “one” “fifteen” “pm” “one” “second” . Supported formats are: hhmmss, hhmm
and hh, where hh is hour, mm is minute and ss is second. Hour is in 24-hour format.

- %Ddate—Accepts an | SO standard date format and plays out the date. Supported formats are:
CCYYMMDD, CCYYMM, CCYY, --MMDD, --MM or ---DD, where CC is century, YY isyear,
MM is month and DD is day of month. For example, %D20000914 will play “year” “two”
“thousand” “september” “fourteenth”; %D199910 will play “year” “nineteen” “ninety” “nine”
“october”; %D2001 will play “year” “two” “thousand” “one”; %D--0102 will play “January”
“second”; %D--12 will play “december”; and %D---31 will play “thirty” “first”.

Return Values
None

Command Completion

When the command finishes, the script receives an ev_media_done event. If a seek is done on this
playing stream and the seek goes beyond the end of the prompt, the script still receives an
ev_media_done event. However, if the prompt is terminated by a media stop command, the script does
not receive an ev_media_done event.

Examples

nedi a play |eg_i ncom ng@3$al pha

nedi a play |eg_i ncom ng@$asci i

nedi a play |eg_incomng@\ !'\"#\ $%&' ()*+,-./0123456789:\; <=>?@[\\]1"_"{|}~
medi a play |eg_i ncom ng%b2001

medi a play | eg_incom ng%0201211

medi a play | eg_i ncom ng%b20300830

medi a play |eg_i ncom ng%® --01 %D---02 % --03 %D --04 %D --05 %D---06 %D---07 %D---08
%D---09 9D---10 WD---11 %D---12 %D --13 %D --14 9D --15 WD---16 WD---17 9%D---18 9%D---19
YD --20 %D - - 30

media play leg_incomng%®--21 %O --22 %O---23 % --24 %D---25 %D---26 %D --27 %O --28
W --29 - --31

medi a play | eg_incom ng%01 %902 %03 %04 %05 %06 %07 %08 %09 %10 %11 %12 %13
%14 915 %16 %r1l7 %18 %19 %920 %21 %22 %23 %00

nedi a play |eg_incom ng%24
medi a play | eg_incom ng%\M %2 %AB %M 9%AN6 96 AT

Usage Notes

- If aprompt is already playing when the media play command isissued, the first prompt is
terminated and the second prompt is played.

- The media play command takes a list of URLs or prompts and plays them in sequence to form a
single prompt. The individual components of the prompt can be full URLs or Text-to-Speech (TTS)
notations. The possible components of the prompt are as follows:

— URL—Thelocation of an audio file. The URL must contain a colon. Otherwise, the code treats
it as afile name, and adds .au to the location.

— name.au—The name of an audio file. The currently active language and the audio file location
values are appended to the name.au. The filename cannot contain a colon, or it istreated as a
URL.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

media record

— %anum—A monetary amount (in US cents). If you specify 123, the value is $1.23. The
maximum value is 99999999 for $999,999.99.

— %tnum—Time (in seconds). The maximum value is 999999999 for 277,777 hours 46 minutes
and 39 seconds.

— %dday_time—Day of week and time of day. TheformatisDHHMM, where D isthe day of week
and 1=Monday, 7=Sunday. For example, %d52147 plays “Friday, 9:47 PM.”

— %stime—Amount of play silence (in ms).

— %pnum—Plays a phone number. The maximum number of digitsis 64. This does not insert any
text, such as “the number is,” but it does put pauses between groups of numbers. It assumes
groupings as used in common numbering plans. For example, 18059613641 isread as 1 805 961
3641. The pauses between the groupings are 500 ms.

— %nnum—~Plays a string of digits without pauses.

— %iid—Plays an announcement. Theid must betwo digits. The digits can be any character except
aperiod (.). The URL for the announcement is created as with _announce <id>.au, and
appending language and au location fields.

— %clanguage-index—L anguage to be used for the rest of the prompt. This changes the language
for therest of the promptsin the current media play command. It does not change the language
for the next media play command, nor does it change the active language.

If no argument is given to the TTS notation, the notation isignored by IVR; no error is reported.

Media play with a NULL argument for %c uses the default language for playing prompts, if there
are valid prompts, along with aNULL %c. Previously, the script would abort.

If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call is cleared.

If the call leg specified by an information tag maps to more than one leg, the script terminates, sends
an error message to the console, and clears the call. The use of leg_all is not recommended, since
thisis more likely to map to multiple legs.

The media play command cannot be applied to aleg that is part of a connection. When executed to
a conferenced leg, the script aborts with message "Leg isin Conferenced state". The connection
must be destroyed, then the media play can run and the connection can be re-created.

Multi-language support through Tcl-based language scripts must be enabled in order to use the
newly defined dynamic prompts: @Ccharacters, %Wday_of week, %Ttime_of day, and %Ddate.
See the command call language voice in the Enhanced Multi-Language Support for Cisco |OS
Interactive Voice Response document. At this time, only the English version of these new dynamic
prompts are supported.

The media record command records the audio received on the specified call leg and saves it to the
location specified by the URL.

Syntax
media record {legID | info-tag} url codec duration

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Arguments
- |legiD—The ID of the call leg whose audio will be recorded.

- info-tag—A direct-mapped info-tag mapping to exactly one leg. For more information about
info-tags, see Chapter 4, “Information Tags.”

- url—Thelocation of the target file that the audio will be recorded to.

- codec—An integer value used to specify codec to be used during recording. The following are
possible values:

— 2—voipCodecG726r16
— 3—voipCodecG726r24
— 4—voipCodecG726r32
— 5—voipCodecG71lulaw
— 6—voipCodecG711Alaw
— 7—voipCodecG728

— 8—voipCodecG723r63
— 9—voipCodecG723r53
— 10—voipCodecGSM

— 11—voipCodecGSMefr
— 12—voipCodecG729%b
— 13—voipCodecG729ab
— 14—voipCodecG723ar63
— 15—voipCodecG723ar53
— 16—voipCodecG729IETF

Note Any value other than the above will result in unexpected behavior.

- duration—The duration of the recording in milliseconds. The valid input range is 0—4294967296.
If zero is specified, the recording continues until the Tcl VR application stops it using the media
stop command or until the user hangs up.

Return Values
None

Command Completion

The script receives an ev_media_done event when recording terminates after the specified duration, or
the application issues a media stop command. If the recording is terminated by aleg disconnect, the
script does not receive an ev_media_done event, it receives an ev_disconnected event for the leg. If the
recording is successful, it can be accessed at the location specified in the URL when the command was
issued.

Example

medi a record | eg_incomng rtsp://voicemail/joesn th/ message6.au 5 60000

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Usage Notes

» Future |OS releases may change the media record command syntax in a way that is not backward
compatible.

» Recording is supported for RTSP only. If the speficied URL is non-RTSP, unexpected results may
occur.

- If the specified call leg isinvalid, the script terminates, displaysan error on the console, and clears
the call.

- If the call leg specified by an information tag maps to more than one leg, the script terminates,
displays an error on the console, and clears the call. The use of leg_all is not recommended, since
thisis more likely to map to multiple legs.

- If the specified call leg is already being recorded, the script receives an ev_media_done event
indicating afailure for the second media record invocation. The script receives another
ev_media_done event when the first recording completes.

- It isokay for the specified call leg to be in the conferenced state. In this case, only the audio
received from the specified leg is recorded.

» Simultaneous playout and record on asingle call legisnot supported. Attemptsto do thismay result
in unexpected or undesireable behavior.

media resume

The media resume command resumes play of the prompt that is currently paused on the specified call
leg.

Syntax
media resume {legID | info-tag}

Arguments
» leglD—The ID of the call leg to which to resume play of the prompt.

- info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values
None

Command Completion

This command has immediate completion. However, the script should be prepared to receive an
ev_media_done event if the command fails. An ev_media _done event is not generated when this
command is successful.

Example

nedi a resunme $l egl D

Usage Notes

If the specified call legisinvalid, the script terminates and displays an error to the console, and the call
is cleared.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

media seek

media stop

Tcl IVR Commands 1l

The media seek command does a relative seek on the prompt that is currently playing. This command
moves the prompt forward the specified number of seconds within the message.

Syntax
media seek {leglD | info-tag} time-in-seconds

Arguments
e leglD—The ID of the call leg.

- info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”.

- time-in-seconds—The number of seconds to seek forward. If you specify a negative number, the
prompt moves backward in the message.

Return Values
None

Command Completion

This command has immediate completion. However, the script should be prepared to receive an
ev_media_done event if the command fails. An ev_media_done event is not generated when this
command is successful.

Example

nedi a seek $l egl D +25
nedi a seek $leglD -10

Usage Notes

- |If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call iscleared.

» Thiscommand works only with RTSP prompts. If there are non-RT SP-based prompts on the prompt
list that is currently playing, the command does not work.

- If you specify a number of seconds greater than the remaining time in the prompt, the seek moves
to the end of the prompt and the script receives an ev_media_done event.

The media stop command stops the prompt that is currently playing on the specified call leg.

Syntax
media stop {leglD | info-tag}

Arguments
» legID—The ID of the call leg to which to stop the prompt.

- info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

| Doc Version 12.3.2

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Return Values
None

Command Completion

Immediate. However, the script receives an ev_media_done event if the prompt completed before being
stopped.

Example
nedi a stop $l egl D

Usage Notes

If the specified call legisinvalid, the script terminates and displays an error to the console, and the call
is cleared.

object create dial-peer

Creates a list of dial-peer handles using <peer_handle_spec> as the prefix of the handle name.

Syntax
object create dial-peer <peer_handle_spec> <destination_number>

Arguments

- peer_handle_spec—Specifies the name of Tcl variables created to represent dial peer handles. The
format of peer_handle_specis<handle_prefix>:<from_index>. The system concatenates the prefix
with a sequence number, starting with <from_index>, to build the dial peer handle name.

» destination_number—The call destination number.

Return Values
Returns the number of dial peer handles created.

Command Completion
Immediate.

Examples

obj ect create dial-peer dp_handle:0 $dest

Usage Notes

» Asan example of how the system generates handle names, consider the situation where two dial
peers match the same destination. In this case, the return value will be 2, and the created handle
names will be dp_handle0 and dp_handlel.

- If ahandle with a specified name already exists, the handle is deleted, regardless of its type, and a
new handle is created.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

object create gtd

Used to create a GTD Handle to a new GTD area from scratch. The system creates the associated
underlying data structure ready for the application to insert (append) GTD parameters to it.

Syntax
object create gtd <GTDHandle> {<message-id>|<reference-handle>}

Arguments

- GTDHandle—The name of the handle the application wants to create and use for subsequent
manipulations of the GTD message.

- message-id—The name of the message the application wants to create. The following values are
currently supported:

- |IAM
- CPG
- ACM
- ANM
- REL
— INF
- INR

» reference-handle—Refers to an existing GTD handle; the format is: &<handle_name>.

Return Values
Returns the number; 1 if the handle can be created, 0 otherwise.

Command Completion
Immediate.

Examples

set gtd_creation_cnt [object create gtd gtd_setup_ind | AM
set gtd_creation_cnt [object create gtd gtd_setup_ind2 >d_setup_i nd]

Usage Notes

- Thisoptionis used if the application wants to build a GTD area from scratch. After creating the
handle, the application typically appends one or more GTD attributes to it.

» The handle name must not contain the ‘:’ character, as it has special meaning in the object destroy
command.

- If ahandle with the specified name already exists, it will be deleted (regardless of itstype) before a
new handle is created.

- Asalways, the application should check the return value before using the handle.
- A gtd handle cannot be handed off to another application.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

object destroy
Destroys a specific dial peer item associated with handle or all handles specified by the handle_spec.

Syntax
object destroy [<handle> | <handle_spec>]

Arguments
- handle—The handle of the dial peer to be destroyed.
- handle_spec—Specifies arange of dial peer handles to delete. The format of handle_spec is

<handle_prefix>:<from_index>:<to_index>. The system concatenates the prefix with the index
and uses the result to delete the handle.

Return Values
Returns the number of objects destroyed.

Command Completion
Immediate.

Examples

obj ect destroy dp_handl e2
obj ect destroy dp_handl e: 0: 2

In the second example above, the system attempts to destroy dp_handle0, dp_handlel, and dp_handle2.

Usage Notes

» When adial peer item, or aset of dial peers, is destroyed, the associated dial peer datais also
destroyed.

object append gtd
Appends one or more GTD attributes to a handle.

Syntax
object append gtd <GTDHandle> <GTDSpec>

Arguments

- GTDHandle—the handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd
or could be one created from scratch using the object create gtd command.

» GTDSpec—the GTD attribute to modify.

Return Values
None

Command Completion
Immediate

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Examples

obj ect append gtd gtdhandl eA > dhandl eB. pci . -1

obj ect append gtd gtdhandl eA > dhandl eB. pci . 2

obj ect append gtd gtdhandl eA pci.1.dat "F4021234 " >dhandl eB.fdc.-1
obj ect append gtd gtdhandl eA > dhandl eB.fdc.-1 pci.1.dat "F4021234 "

Usage Notes

When appending a GTD attribute instance to a GTD message, all fields of the GTD structure must
be specified.

As many attributes may be specified in a single gtd modification as the application wishes that does
not exceed the limit of the Tcl parser. Use the backslash-newline sequence to spread a long
command across multiple lines.

If an attribute field is specified multipletimesin acommand, the value of the last processed attribute
field will be used.

The append command can have <instance _ref> asa <gtd spec>.

The <attr_instance> of an <instance_ref> does not contain field name. That is, operationsinvolving
an <instance ref> always refer to the whole attribute.

If multiple operations are applied to an attribute the result of the last operation may override the
previous result. Thisislike doing multiple commands one after another.

Any errors found during the syntax checking will abort the command.

object delete gtd

Deletes one or more GTD attributes.

Syntax
object delete gtd <GTDHandle> <GTD spec>

Arguments

GTDHandle—the handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd
or could be one created from scratch using the object create gtd command.

GTDSpec—the GTD attribute to modify.

Return Values
None

Command Completion
Immediate

Examples

obj ect delete gtd gtdhandl eA pci.1
obj ect delete gtd gtdhandl eA pci.-1

Cisco I0S Version 12.3(2)T

Usage Notes

As many attributes may be specified in a single gtd modification as the application wishes that does
not exceed the limit of the Tcl parser. Use the backslash-newline sequence to spread a long
command across multiple lines.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

If an attribute field is specified multipletimesin acommand, the value of the last processed attribute
field will be used.

The <attr_instance> in a delete command cannot specify afield name.

The delete command does not accept <attr_value>.

The delete command does not use <instance_ref> as <attribute_spec>.

If multiple operations are applied to an attribute, the last operation overrides the previous result.
Any errors found during syntax checking aborts this command.

Deleting using the multiple instance form (-1) will not cause a script failure if no instanceis found
to delete. This allows scripts to works smoothly and quickly without checking for the existence of
an attribute before deleting it.

object replace gtd

Replaces one or more GTD attributes.

Syntax
object replace gtd <GTDHandle> <GTD spec>

Arguments

GTDHandle—the handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd
or could be one created from scratch using the object create gtd command.

GTDSpec—the GTD attribute to modify.

Return Values
None

Command Completion
Immediate

Examples

obj ect replace gtd gtdhandl eA pci.1 > dhandl eB. pci.5

obj ect replace gtd gtdhandl eA pci.-1 >dhandl eB.pci.-1

obj ect replace gtd gtdhandl eA pci.-1 >dhandl eB. pci.3

obj ect replace gtd gtdhandl eA pci.1 > dhandl eB. pci.5 fdc.1.dat F4021234
obj ect replace gtd gtdhandl eA fdc.1.dat " F4021234" pci.1l >dhandl eB. pci.5

Usage Notes

As many attributes may be specified in a single gtd modification as the application wishes that does
not exceed the limit of the Tcl parser. Use the backslash-newline sequence to spread a long
command across multiple lines.

If an attribute field is specified multipletimesin acommand, the value of the last processed attribute
field will be used.

The <attr_instance> of an <instance_ref> does not contain field name. That is, operationsinvolving
an <instance_ref> always refer to the whol e attribute.

If multiple operations are applied to an attribute the result of the last operation may override the
previous result. Thisis like doing multiple commands one after another.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

« Any errors found during the syntax checking will abort the command.

- If <instance_ref> immediately follows an <attr_instance>, its value is used to update the specified
<attr_instance>.

- If areference handleis used, the script will not get a script error if the reference handle uses -1 as
the instance number.

object get gtd
Retrieves the value of an attribute instance or alist of attributes associated with the given GTD handle.

Syntax
object get gtd <GTDHandle> <attr_instance>

Arguments

- GTDHandle—the handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd
or could be one created from scratch using the object create gtd command.

- attr_instance—an attribute instance in the format: <attr_name>,<field_instance>,<field_name>.

Return Values
None

Command Completion
Immediate

Examples

obj ect get gtd setup_gtd_handle pci.1l.dat
obj ect get gtd setup_gtd_handle fdc.-1.dat

Usage Notes

- If the application wantsto retrieve the value of all instances of an attribute’sfield, it sets the content
of <field_instance> to -1. If more than one instance is available, their values are separated by a
space. Note that it does not matter if an attribute has multiple instances or not, a -1 will always be
interpreted as "retrieve all instances'.

object get dial-peer

Returns dial peer information of adial peer item or a set of dial peers.

Syntax
object get dial-peer { <handle> | <handle_spec>} <attribute name>

Arguments
- handle—The handle to the dial peer whose data is to be retrieved.

» handle_spec—Specifies a range of dial peer handles that and is of the format
<handle_prefix>:<from_index>:<to_index>. Usethisformat to retrieve attribute information from
arange of dial peer handles.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

- attribute_name—Values can be one of the following:
— encapType
— voicePeerTag
— matchTarget
— matchDigitsE164
— sessionProtocol

Return Values

A string containing the requested dial peer information. Depending on the command argument, either
information about a set of dial peer handles or aparticular oneisreturned. If information from morethan
one dial peer handle is returned, the values are separated by space.

Command Completion
Immediate.

Examples

obj ect get dial-peer dp_handl e3 matchTar get
obj ect get dial-peer dp_handle:0:2 matchTarget

Usage Notes
- If the specified dial peer item does not exist or contain any dial peer, nothing is returned.

- Thevalues for encapType can be one of the following:
— Telephony
- VoIlP
— Other (none of the above)
» The value for voicePeerTag is a number representing the peer item.

- Thevalue for matchTarget is a string containing the configured target specification. For example,
the value of matchTarget for a RAS session target is session target ras.

» Thevalue for matchDigitsE164 is a number string that matches the dial peer.
» The value for sessionProtocol can be one of the following:

- H323

- SIP

— Other (none of the above)

playtone

The playtone command plays a tone on the specified call leg. If a conference isin session, the digital
signaling processor (DSP) stops sending data to the remote end while playing atone. This command is
typically used to give the caller adial toneif the script needs to collect digits.

Syntax
playtone {leglD | info-tag} {Tone | StatusCode}

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Arguments
» leglD—The ID of the call leg to be handed off.

- info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

» Tone—One of the following:
— tn_none—Stops the tone that is currently playing.
— tn_dial—Playsadial tone.
— tn_busy—Plays a busy tone.
— tn_addrack—Plays an address acknowledgement tone.
— tn_disconnect—Plays a disconnect tone.
— tn_oos—Plays an out-of-service tone.
— tn_offhooknotice—Plays an off-the-hook notice tone.
— tn_offhookalert—Plays an off-the-hook alert tone.

» SatusCode—The status code returned by the evt_status info-tag. If a status code is specified, the
playtone command plays the tone associated with that status code.

Return Values
None

Command Completion
Immediate

Example

pl aytone | eg_incoming [getlnfo evt_status]
pl aytone leg_all tn_oos

Usage Notes

- |If the specified call leg isinvalid, the script terminates and displays an error to the console, and the
call iscleared.

» The playtone command only works for telephony call legs and is silently ignored for Vol P legs.

puts

The puts command outputs a debug string to the console if the IVR state debug flag is set (using the
debug voip ivr script command).

Syntax
puts string

Arguments
- string—The string to output.

Return Values
None

Command Completion
None

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Example:
puts “Hello $nane”

requiredversion

set avsend

Note

Therequiredver sion command verifiesthat the script is running the correct version of the Tcl IVR API.

Syntax
reguiredversion majorversion.minorversion

Arguments
» majorversion—Indicates the mgjor version of the Tcl IVR API that the underlying Cisco |OS code
supports.

» minorversion—I ndicatesthe minimum level of minor version of the Tcl IVR API that the underlying
Cisco 10S code supports.

Return Values
None

Command Completion
None

Example
requiredversion 2.5

Usage Notes

If the version of the script does not match the major version specified or is not equal to or greater than
the minor version specified, the script terminates and an error is displayed at the console.

Sets an associative array containing standard AV or VSA pairs.

Syntax
set avSend (attrName [, index] value

Cisco |OS Release 12.1(2)T is the first release incorporating the argument avSend.

Arguments
- attrName—Currently, only two IV R-specific attributes are supported: h323-ivr-out and
h323-credit-amount. See the table of AV-Pair Names, page 4-2 for more information on these types.

- index—An optional integer index starting from 0, used to distinguish multiple values for a single
attribute.

Return Values
None

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

Command Completion
Immediate

Examples
set avsend(h323-credit-anmunt) 25.0

set avsend(h323-ivr-out,0) "payphone:true"
set avsend(h323-ivr-out, 1) "creditTine: 3400"

Usage Notes

If the specified call legisinvalid, the script terminates and displays an error to the console, and the call
is cleared.

set callinfo

Sets the parametersin an array that determines how the call is placed. The outgoing call is then placed
using the leg setup command.

Syntax

set callinfo (tagName [,index]) value

Arguments
- tagName—Parameter that determines how the call is placed. The array can contain the following:

destinationNum—Called or destination number. For mode, this argument is used as
transfer-target or forwarded-to number.

originationNum—Origination number. For mode, this argument is used as transfer-by or
forwarded-by number.

originationNumPl—Calling number Presentation Indication value.

Values allowed are:
presentation_allowed
presentation_restricted
number_lost_due_to_interworking
reserved_value

originationNumSl—Calling number Screening Indication value.

Values allowed are:

usr_provided unscreened
usr_provided_screening_passed
usr_provided_screening_failed
network_provided

accountNum—Caller’s account number.

redirectNum—Redirect number. Originally added to change afield in an end-to-end ISDN
redirect |1E. Also used to specify the number requesting a call transfer. Typically, the calling
number of the leg that receives an ev_transfer_request event. Default value is null.

redirectNumPl—Redirect number Presentation Indication value.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Cisco I0S Version 12.3(2)T

Tcl IVR Commands 1l

Values allowed are:
presentation_allowed
presentation_restricted
number_lost_due_to_interworking
reserved_value

redirectNumS—Redirect number Screening I ndication value.

Values allowed are:

usr_provided unscreened
usr_provided_screening_passed
usr_provided_screening_failed
network_provided

redirectCount<count>—Used to set the redirect number Screening Indication value. Valid
count values are in the range of 0—7. The count is automatically incremented with each
forwarding request from the destination. The decision of when to stop forwarding at a specified
count is the responsibility of the script.

redirectReason<value>—Used to set the redirect number Reason value.

Values allowed are:
rr_no_reason
rr_cfb

rr_cfnr
rr_rsvdl
rr_rsvd2
rr_rsvd3
rr_rsvd4
rr_rsvd5
rr_rsvdé
rr_rsvd7
rr_rsvd8
rr_rsvd9
rr_rsvd10
re_ct

rr_cp
rr_not_present

In conjunction with mode, the following values specify the type while initiating
call-forwarding:

rr_cfu
rr_cfb
rr_cfnr
re_cd

redirectCfnrInd<value>—Used to set the CFNR Indicator.

Values allowed are:
cfnr_true
cfnr_false (default)

alertTime—Determines how long (in seconds) the phone can ring before the call isaborted. The
default isinfinite.

usr DstAddr—T his tag maps directly to the destinationAddress in the user-to-user information
of the H.323-Setup message. The tag can set thisfield in either €164 format or h323-id string
format. A maximum of 10 instances of thistag is allowed.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

usr SrcAddr—Thistag maps directly to the sourceAddress in the user-to-user information of the
H.323-Setup message. The tag can set thisfield in either €164 format or h323-id string format.
A maximum of 10 instances of thistag is allowed.

addrResSrcInfo—This tag maps directly to srclnfo of the ARQ RAS message to the gatekeeper.
The tag can set thisfield in either €164 format or h323-id string format. A maximum of 10
instances of thistag is allowed.

addrResDstInfo—This tag maps directly to dstInfo of the ARQ RAS message to the gatekeeper.
The tag can set thisfield in either €164 format or h323-id string format. A maximum of 10
instances of thistag is allowed.

displaylnfo—This tag maps directly to displaylnfo of the H323-Setup message.

mode—Possible values are: rotary / redirect / redirect_rotary. If not specified, the default value
is rotary. See Usage Notes for a description of values.

» rotary—The call setup attempts to set up a call between the destination and the leglD by
normal call setup (rotary) routines and to conference the legs.

» redirect—The call setup attempts to set up a call between the destination and the leglD by
transferring the leglD endpoint to the destination phone number. A protocol-specific
transfer request is sent on the leglD to initiate the transfer. If the transfer attempt fails, the
command aborts. It the transfer successful, the leglD eventually gets disconnected from the
endpoint, with the application relinquishing control of the leg as a side effect.

- redirect_rotary—The call setup attempts to set up a call between the destination and the
legl D by first transferring the legl D endpoint to the destination phone number. If the transfer
attempt fails, either internally by checking the type of call leg or after a transfer message
round trip, the command tries to reach the destination by normal call setup (rotary) methods
and to conference the legs. The application retains the control of the leglD and the new leg.
If the transfer is successful, the leglD eventually gets disconnected from the endpoint, with
the application relinquishing control of the leg as a side effect.

rerouteMode—Possible values are: none/ rotary / redirect / redirect_rotary. If not specified,
the value is same as mode. If both this argument and mode are not specified, the default value
isrotary.

- none—If the destination endpoint issues a redirect request while attempting a rotary call
setup, the call setup abortsand an ev_setup_done event is sent to the script with redirected-to
numbers. The redirect reason is specified in the evt_redirect_info information tag.

- rotary—If the destination endpoint issues a redirect request while attempting a rotary call
setup, anormal rotary call setup occurs towards the redirected-to number.

» redirect—If the destination endpoint issues a direct request while attempting a rotary call
setup, an attempt is made to propagate the request onto the leglD. If the legID is not yet
connected, acall-forwarding request is sent. If the legl D is connected, acall-transfer request
issent. If the leglD doesn’t support any redirect mechanism, an ev_setup_done event with
an appropriate error code is sent to the script.

» redirect_rotary—Similar to redirect, except that if the leglD does not support any redirect
mechanism, a normal rotary call setup occurs towards the redirected-to number.

transfer ConsultlD—A token used in call transfer with consultation. Typically extracted from
an ev_transfer_request event. Default value is null.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

— originationNumTON—Sets the calling number octet 3 TON field in the ccCallInfo structure.

Values allowed are:
ton_unknown
ton_international
ton_national
ton_network_specific
ton_subscriber
ton_reservedl
ton_abbreviated
ton_reserved2
ton_not_present

— destinationNumTon—Sets the called number octet 3 TON field in the ccCalllnfo structure.

Values allowed are:
ton_unknown
ton_international
ton_national
ton_network_specific
ton_subscriber
ton_reservedl
ton_abbreviated
ton_reserved2
ton_not_present

— originationNumNPI—Sets the calling number octet 3 NPI field in the existing ccCalllnfo
structure.

Values allowed are:
npi_unknown
npi_isdn_telephony_el64
npi_reservedl
npi_data_x121
npi_telex f69
npi_reserved2
npi_reserved3
npi_reserved4
npi_national _std
npi_private
npi_reserved5
npi_reserved6
npi_reserved7
npi_reserved8
npi_reserved9
npi_reserved10
npi_not_present

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

destinationNumNPI—Sets the called number octet 3 NPI field in the existing ccCalllnfo
structure.

Values allowed are:
npi_unknown
npi_isdn_telephony _e164
npi_reservedl
npi_data x121
npi_telex f69
npi_reserved2
npi_reserved3
npi_reserved4
npi_national _std
npi_private
npi_reserved5
npi_reserved6
npi_reserved?
npi_reserved8
npi_reserved9
npi_reserved10
npi_not_present

guid—The GUID of the outgoing call leg.
incomingGuid—The incoming GUID field for the outgoing call leg.
originalDest—The original called number.

previousCauseCode—The cause code of the previous setup attempt. This attribute may be set
together with the retryCount attribute.

retryCount—The setup retry count.

interceptEvents <list of intercept events>—A list of space-separated events associated with the
call setup signal the application wants to intercept. Valid events are: ev_alert and

ev_address resolved. After delivering the requested event, the system waits for the application
totell it to continue with the setup processing.

notifyEvents <list of notify events>—A list of space-separated events associated with the call
setup signal the application wants to receive as notification. Valid events are ev_proceeding,
ev_progress, ev_alert, and ev_connected. After delivering the requested event, the system waits
for the application to tell it to continue with the setup processing.

speech—If set to true, enables “fax relay only” service.
fax—If set to true, enables “fax store & forward only” service.
faxOnVoip—If set to true, enables “fax on VolP" service.
sourceCarrierlD—Used to read the source carrier ID.
targetCarrierlD—Used to modify the target carrier I1D.

- index—An optional integer, starting with 0, used to distinguish multiple instances of a single tag.

» value—The value to be set.

Return Values

None

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

Tcl IVR Commands 1l

Command Completion
Immediate

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

timer left

Examples

set call I nfo(usrDstAddr,0) “el64=488539663"

set calllnfo(addrResSrclnf,1) “h3231d=09193926573"

set calllnfo(displaylnfo) “hi there”

set call I nfo(node) “REDI RECT_ROTARY”

set callInfo(rotaryRedirectMde) “ROTARY”

set calllnfo(notifyEvents) “ev_transfer_status ev_alert”
set calllnfo(transferConsultlD) $targetConsultlD

Usage Notes
None

The timer left command returns the number of seconds left on an active timer.

Syntax
timer left type [legID | info-tag]

Arguments
» type—The type of timer. Possible timers are:

— call_timer0—Associated with a call and isvalid for the life of the call, or during the time
between the invocation of the script and the call close command.

— leg_timer—Associated with a specific call leg and is valid during the life of the call leg,
meaning the timer is stopped when the call leg is disconnected.

- legID—The ID of the call leg. This argument is used only if leg_timer is specified as the type of
timer.

- info-tag— A direct mapped info-tag mapping to one leg. For more information about info-tags, see
Chapter 4, “Information Tags.”.

Return Values
None

Command Completion
Immediate

Example

set time [timer left call_tiner0]
set time [timer left leg_timer $leglD2]

Usage Notes

If the specified call legisinvalid, the script terminates and displays an error to the console, and the call
is cleared.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter3 Tcl IVR APl Command Reference

timer start

Tcl IVR Commands 1l

The timer start command starts a timer for a specified number of seconds for the whole call or for the
specified call leg.

Syntax
timer start type time [leglD | info-tag]

Arguments
- type—The type of timer. Possible timers are:

— call_timerO0—Associated with acall and isvalid for the life of the call, or during the time
between the invocation of the script and the call close command.

— leg_timer—Associated with a specific call leg and is valid during the life of the call leg,
meaning the timer is stopped when the call leg is disconnected.

» time—The time (in seconds) that the timer should run.

- |legiD—TheID of the call leg. This argument is used only if leg_timer is specified as the type of
timer.

- info-tag— A direct mapped info-tag mapping to one leg. For more information about info-tags, see
Chapter 4, “Information Tags.”.

Return Values
None

Command Completion
When the timer expires, the script receives an ev_call_timer0O or an ev_leg_timer event.

Example

timer start call _tinmer0 30
timer start leg_tinmer 65 $l egl D2

Usage Notes
If the specified call legisinvalid, the script terminates and displays an error to the console, and the call
is cleared.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide

| Doc Version 12.3.2

Chapter 3 Tcl IVR APl Command Reference |

W Tcl IVR Commands

timer stop

The timer stop command stops a timer.

Syntax
timer stop type [legID | info-tag]

Arguments
- type—The type of timer. Possible timers are:

— call_timerO0—Associated with acall and isvalid for the life of the call, or during the time
between the invocation of the script and the call close command.

— leg_timer—Associated with a specific call leg and is valid during the life of the call leg,
meaning the timer is stopped when the call leg is disconnected.

- legID—The ID of the call leg. This argument is used only if leg_timer is specified as the type of
timer.

- info-tag— A direct mapped info-tag mapping to one leg. For more information about info-tags, see
Chapter 4, “Information Tags.”.

Return Values
None

Command Completion
None

Example

timer stop call_timer0O
timer stop leg_tinmer $leglD2

Usage Notes

If the specified call legisinvalid, the script terminates and displays an error to the console, and the call
is cleared.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

Note

N

CHAPTER I

Information Tags

Information tags (info-tags) are identifiers that can be used to retrieve information about call legs,
events, the script itself, current configuration, and values returned from RADIUS.

Some info-tags have one or more parameters that are used to further identify the information to be
retrieved, set, or modified.

Info-tags are grouped according to use. The first three characters of the info-tag label indicate the
grouping:

aaa—RADIUS information.
cfg—Configuration information.
con—Connection information.
evt—Event information.

leg—Call leg information.
med—M edia services information.
sys—System information.

This chapter lists the available info-tags and the following information about each:

Description—Explanation of the purpose of the info-tag.
Syntax—The syntax of the info-tag.
Mode—Whether the info-tag is read or read-write.

Scope—The context in which the info-tag can be used. Some info-tags can be used at any time
(global). Others are valid only when certain events are received, and the script terminates with error
output if the info-tag is used in other situations. For example, you cannot call evt_dcdigits while
handling the ev_setup_done event. In other words, if the previous command is leg setup and the
ev_setup_done event has not yet returned, then you cannot execute an infotag get evt_dcdigits
command, or the script will terminate with error output.

Return Type—The type of information returned by the info-tag when used with an infotag get or
infotag set command.

Direct Mapping—Whether the info-tag can be used directly with a command (other than the
infotag get or infotag set commands) and with which commands it can be used.

Note

If an info-tag is specified incorrectly, if any of the parameters are specified incorrectly, or if the info-tag
is used outside its intended scope, the script terminates with error output.

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

|
aaa_avpair
Description Returns the value of an AV-pair that was returned by RADIUS.
After an authorize command finishes, the RADIUS server could have returned
parameters as AV-pairs. Thisinfo-tag, along with aaa_avpair_exists, is used to
get the value of a parameter after checking that such a parameter was returned.
Refer to the table in “AV-Pair Names’ section on page 4-2 for alist of valid VSA
AV-pair names.
Syntax infotag get aaa_avpair avpair-name
Mode Read
Scope Global
Return Type String, Number, Boolean (1 or 0), or any other value that is configured or
returned through RADIUS.
Direct Mapping None

aaa_avpair_exists

Description Returns the number of matched AV-pairsin the RADIUS server return.
After an authorize command completes, the RADIUS server may return
parameters as AV-pairs. Thisinfo-tag, along with aaa_avpair, is used to
find out if a parameter exists before getting its value. Refer to the tablein
the “AV-Pair Names” section on page 4-2 for alist of valid VSA AV-pair
names.

Syntax infotag get aaa_avpair_exists avpair-name

Mode Read

Scope Global

Return Type Number

Direct Mapping None

AV-Pair Names

The info-tag aaa_avpair_exists can be used to check the availability of a VSA. The info-tag aaa_avpair
can be used to access the value returned in this VSA. The valid VSA names that can be passed as
parameters to these commands are the following.

Type Name Description
aaa h323-ivr-in A generic VSA for the billing server to send any
information to the gateway in the form of an AV-pair, such
as “color:blue” or
“advprompt:rtsp://www.cisco.com/rtsp/areyouready.au”
h323-ivr-out A generic VSA for the gateway to send any information to
the billing server in the form of an AV-pair, such as
“color:blue” or
“advprompt:rtsp://www.cisco.com/rtsp/areyouready.au”
h323-credit-amount The credit amount remaining in the account is returned.
h323-credit-time The credit time remaining in the account is returned.
h323-prompt-id The ID of the prompt is returned.

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

N

Note

Type Name

Description

h323-redirect-number

The number for redirection of a call isreturned.

h323-redirect-ip-addr

The IP address for the preferred route is returned.

h323-preferred-lang

The language that the billing system returns as the
preferred language of the end user. Three languages are
supported; en (english), sp (spanish), and ch (mandarin).
You can define additional languages as needed.

h323-time-and-day

The time and day at the destination.

h323-return-code

This information is returned only after an authorization
command isissued. It returns either a numerical value or
“Unknown variable name.” The numerical value indicates
what action the IVR application should take, namely to
play a specific audio file to inform the end user of the
reason for the failed authorization. If “Unknown variable
name” is returned, the external AAA-server is out of
service.

h323-billing-model

Indicates the billing model used for the call. Initial values:
0=Credit, 1=Debit. Note: The debit card application
assumes a Debit billing model.

h323-currency

I SO currency to indicate what units to use in playing the
remaining balance. The debit card application assumes
units of preferred_language_dollar.au and
preferred_language _cent.au.

If the aaa variable returns“0,” thisindicates that there is no VSA match to the name returned.

aaa_new_guid

cfg_avpair

Cisco I0S Version 12.3(2)T

Description Request the system to generate and return a new GUID.

Syntax infotag get aaa_new_guid

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns the value of an AV-pair that was configured through the CLI.

Syntax infotag get cfg_avpair avpair-name

Mode Read

Scope Global

Return Type String, Number, Boolean (1 or 0), or any other value that is configured or
returned through RADIUS.

Direct Mapping None

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

cfg_avpair_exists

con_all

con_ofleg

Description Returns an indication of whether the specified parameter or AV-pair was
configured through the CLI.

Syntax infotag get cfg_avpair_exists avpair-name

Mode Read

Scope Global

Return Type Boolean (1 = true; O=false)

Direct Mapping None

Description Returns or maps to alist of all the connection IDs in the script.

Syntax infotag get con_all

Mode Read

Scope Global

Return Type Number list

Direct Mapping Connections

Description Getsalist of al the connections the leg is a part of. This does not include those
connections that are in Creation or under Destruction. The info-tag should map
to just one leg.

Syntax infotag get con_ofleg {info-tag | legl D}

Mode Read

Scope Global

Return Type Number list

Direct Mapping Connections

evt_address_resolve reject_reason

Description Returns the address resol ution rejection cause.
Syntax infotag get evt_address resolve reject_reason
Mode Read

Scope ev_address resolved

Return Type Number

Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

evt_address_resolve term_cause

Description Returns the address resol ution termination cause.
Syntax infotag get evt_address resolve term_cause
Mode Read

Scope ev_address resolved

Return Type Number

Direct Mapping None

evt_connections

Description Returns alist of connection IDs associated with the event received.
Syntax infotag get evt_connections
Mode Read
Scope ev_handoff
ev_returned
ev_setup_done
ev_create_done
ev_destroy_done
Return Type Number list
Direct Mapping Connections

evt_consult_info

evt_dcdigits

Cisco I0S Version 12.3(2)T

Description Returns consult information from a consult response event.
Syntax infotag get evt_consult_info {consultID | transferDest}
Mode Read

Scope ev_consult_response

Return Type String

Direct Mapping None

Description Returns the digits collected by the leg collectdigits command.
Syntax infotag get evt_dcdigits

Mode Read

Scope ev_collectdigits _done

Return Type String

Direct Mapping None

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 4

Information Tags |

evt_digit

Description Returns the digit key that was pressed.
Syntax infotag get evt_digit

Mode Read

Scope ev_digit_end

Return Type String

Direct Mapping None

evt_digit_duration

evt_endpoint_addresses

evt_event

Description Returns the duration of the digit that was pressed.
Syntax infotag get evt_digit_duration

Mode Read

Scope ev_digit_end

Return Type Number

Direct Mapping None

Description Returns a list of endpoint addresses.

Syntax infotag get evt_endpoint_addresses

Mode Read

Scope ev_address resolved

Return Type String
The return value has the following structure:
<endpointAddress>#< endpointAddress>#...
The first endpointAddress is the primary address. The endpointAddresses that
follow are the alternate addresses.

Direct Mapping None

Description Returns the name of the event received.

Syntax infotag get evt_event

Mode Read

Scope Global

Return Type String

Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

evt facility id

Description Returns the service type of the facility message response. The value is
ss_mcid_resp for MCID invocation responses.

Syntax infotag get evt_facility id

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set facility_id [infotag get evt_facility_id]

Usage Notes None

evt_facility report

Cisco I0S Version 12.3(2)T

Description Enables the receipt of facility events.

Syntax infotag set evt_facility report <mcid | gtd>

Mode Write

Scope Global

Return Type String

Direct Mapping None

Example infotag set evt_facility_report gtd

Usage Notes - The mcid option of thisinformation tag must be set to receive facility

responses from MCID responses.

- The gtd option of thisinformation tag must be set to receive facility events
that contain GTD information.

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

evt feature report

Description

Used to enable/disable certain feature events to be intercepted by script.

Syntax

infotag set evt_feature report {["no_"]event_names}

where’event_names' isalist of application event names that define what events
should or should not be reported to the application when a call is active
(connected). An event name with "no_" prefix means not to report it.

Possible event names are:

fax

modem
modem_phase
hookflash
onhook
offhook

Mode

Write

Scope

ev_feature

Return Type

None

Direct Mapping

None

evt feature type

Description Returns the feature type string when a feature event is received.
Syntax infotag get evt_feature_type
Mode Read
Scope ev_feature
Return Type String
See Feature Type under Status Codes.
Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

evt_gtd

Description Associates a handle to the GTD parameters contained in the event.
The application can use the handle to include the associated GTD parametersin
any outgoing call signal message.
Syntax infotag get evt_gtd <gtd_handle>
Mode Read
Scope ev_address resolved
ev_alert
ev_connected
ev_disconnected
ev_proceeding
ev_progress
ev_setup_indication
Return Type Number. If a handle can be created from the event, 1 is returned, otherwise O is
returned.
Direct Mapping None
Example set handle [infotag get evt_gtd gtd_inf]
Usage Notes None

evt_iscommand_done

Description Returns an indication of whether the command has finished.
Syntax infotag get evt_iscommand_done
Mode Read
Scope ev_returned
ev_setup_done
ev_collectdigits_done
ev_vxmldialog_done
Return Type Boolean (1 = true; 0 = false)
Direct Mapping None

evt_handoff_string

Cisco I0S Version 12.3(2)T

Description Returns the handoff string when one or more call legs are handed off or returned
to the script.

Syntax infotag get evt_handoff_string

Mode Read

Scope ev_handoff
ev_returned

Return Type String

Direct Mapping None

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

evt_last_disconnect_cause

Description Returns the value of the last failure detected during this call. The failure could
have occurred on any call leg associated with this call. If no failures have
occurred during the call, di_000 is returned.

The value of thisinformation tag is updated while processing the following
events:

- ev_disconnected—Set to the cause value recieved in the protocol message.

» ev_disc_prog_ind—Set to the cause value recieved in the protocol message.

» ev_collectdigits done—Set to di_028 (invalid number) when the
ev_collectdigits_done event returns status cd_006. Not modified when other
digit collect status codes are returned.

» ev_setup_done—Set to the cause code associated with the call setup attempt.
Thevalueisdi_016 (normal) if the call setup is successful.

- ev_authenticate _done—Set to di_057 (bearer capability is not available)
when the ev_authenticate_done event statusis not au_000. Not modified if
event statusis au_000.

- ev_authorize_done—Set to di_057 (bearer capability is not available) when
the ev_authorize_done event statusis not ao_000. Not modified if event
statusis ao_000.

Syntax infotag get evt_last_disconnect_cause

Mode Read

Scope Global

Return Type String. See Disconnect Cause for string format.

Direct Mapping None

evt_last_event _handle

Description Returns the command handle of the setup.
Syntax infotag get evt_last_event_handle
Mode Read
Scope ev_address resolved

ev_alert
Return Type String
Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

evt_legs

Description

Returnsalist of leg |Ds associated with the event received. For information about
which legs the evt_legs info-tag returns for a specific event, see Chapter 5,
“Events.”

Syntax

infotag get evt_legs

Mode

Read

Scope

ev_authorize_done
ev_leg_timer
ev_digit_end
ev_hookflash
ev_disconnected
ev_disconnect_done
ev_grab
ev_setup_indication
ev_media done
ev_handoff
ev_returned
ev_setup_done
ev_collectdigits _done
ev_vxml_dialog_done
ev_vxmldialog_event

Return Type

Number list

Direct Mapping

Legs

evt_progress_indication

Description Returns the value of the progress indication of the received alert, connected,
disconnect, disconnect with PI, proceeding, or progress message.
Syntax infotag get evt_progress_indication
Mode Read
Scope ev_alert
ev_connected
ev_progress
ev_proceeding
ev_disconnected
ev_disc_prog_ind
Return Type Number
Direct Mapping None
Example set progress [infotag get evt_progress_indication]
Usage Notes None

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

evt_redirect_info

Description Returns forwarding request information when a call is being forwarded.
Syntax infotag get evt_redirect_info { redirectDest | redirectReason | redirectCount |
original Dest}
» redirectDest—redirected-to number retrieved during call setup to the
destination
 redirectReason—the type of redirection
— rr_cfb—CF-busy
— rr_cfnr—CF-no answer
— rr_cd—CD-call deflection
— rr_cfu—CF-unconditional
« redirectCount—number of call diversions that have occurred
- originalDest—original called number
Mode Read
Scope ev_setup_done
Return Type String
Direct Mapping None

evt_service_control

Description Returns the service control indexed by <index>, with <index> 1 being the first
service control field.

Syntax infotag get evt_service _control <index>

Mode Read

Scope ev_address resolved

Return Type String

The string content is application dependent. The format of the content are agreed

upon between the application and the route entity.

Note The application processes the service descriptor fields. Neither the
gatekeeper nor the gateway interprets the contents of the service
descriptors.

Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

evt_service _control_count

evt_status

Description Returns the number of service control fields.
Syntax infotag get evt_service control_count
Mode Read
Scope ev_address resolved
Return Type Number
Direct Mapping None
Description Returns the status of the event received. This info-tag is valid only in the scope
of the function handling the event. For alist of possible statuses, see the “ Status
Codes’” section on page 5-4.
Syntax infotag get evt_status
Mode Read
Scope ev_setup_done
ev_collectdigits_done
ev_media _done
ev_disconnected
ev_authorize_done
ev_authenticate_done
ev_vxmldialog_done
Return Type String
Direct Mapping None

evt_transfer_info

Cisco I0S Version 12.3(2)T

Description Returns transfer information from a transfer reguest event.

Syntax infotag get evt_transfer_info {transferBy | transferDest | consultID}
Mode Read

Scope ev_transfer_request

Return Type String

Direct Mapping None

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

evt_vxmlevent

Description Returns a string containing the VXML event that was thrown. These events are
generally of the form vxml.*.
Events thrown from the dialog markup, or the document using the VXML
sendevent object extension, are of the form vxml.dialog.*. For more information
on sendevent objects, refer to SendEvent Object, page 1-8.
Events thrown by the system due to some event, such as the vxml document
executing a <disconnect/> tag, are of the form vxml.session.*.

Syntax infotag get evt_vxmlevent

Mode Read

Scope ev_vxmldialog_done
ev_vxmldialog_event

Return Type String

Direct Mapping None

evt_vxmlevent_params

Description

Retrieves parameters that may come with an event. Thisinfo-tag clearsthe array
variable and fillsit with the parameter values indexed by the parameter namesin
the param option of the sendevent object tag. Parameters can also be returned
through the <exit/> tag with a namelist attribute. For more information on
sendevent objects, refer to SendEvent Object, page 1-8.

In either case, if the namelist contains an audio clip variable, it is made available
to the Tcl script as a parameter with a string value containing the ram:// uri form
for the audio clip. Theinfo tag returns a space-separated list of indexes that were
added to the return array variable passed as a parameter to the information tag.

Syntax

infotag get evt_vxmlevent_params <array-variable-name>

Mode

Read

Scope

ev_vxmldialog_done
ev_vxmldialog_event

Return Type

String
Parameter: array-variable-name

Direct Mapping

None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4

Information Tags

gtd_attr_exists

Description Used to determine if an attribute instance existsin a GTD message.
Syntax infotag get gtd_attr_exists <gtd handle><attr_instance>

- <gtd_handle>—Name of the GTD handle from which the application wants
to check the existence of a GTD attribute instance.

» <attr_instance>—This parameter is of the form <attr_name>,
<attr_instance>. <attr_instance> can be specified with avalue of -1, which
means “don’t care.”

Mode Read
Scope Global
Return Type String
Direct Mapping None

last command_handle

leg_all

Cisco I0S Version 12.3(2)T

Description Retrieves the last command handle.

Syntax infotag get last_command_handle

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns or maps to one or more call legs. Thisisthe union of leg_incoming and
leg_outgoing.

Syntax infotag get leg_all

Mode Read

Scope Global

Return Type Number list

Direct Mapping Legs

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

|
leg_ani
Description Returns the ANI field of Calllnfo.
Syntax infotag get leg_ani [legID]
If noleg ID is specified, thisinfo-tag returns the ANI field of the first incoming
call leg. Not specifying aleg ID works only if thereis at least one incoming call
leg.
If aleg ID is specified, thisinfo-tag returns the ANI field of that call leg. If the
call leg is not valid, the script terminates with error output.
Mode Read
Scope Global
Return Type String
Direct Mapping None
leg_ani_pi
Description Gets the calling number presentation indication value.
Syntax infotag get leg_ani_pi
Mode Read
Scope Global
Return Type Number list
Values retrieved could be one of the following:
1—presentation_allowed
2—presentation_restricted
3—number_lost_due_to_interworking
4—reserved value
5—not_present (denotes that the Calling Number IE is absent in the incoming
signaling message.
Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

leg_ani_si

leg_dn_tag

leg_dnis

Cisco I0S Version 12.3(2)T

Description Gets the calling number screening indication value.

Syntax infotag get leg_ani_si

Mode Read

Scope Global

Return Type Number list
Values retrieved could be one of the following:
1—usr_provided_unscreened
2—usr_provided_screening_passed
3—usr_provided_screening_failed
4—network_provided
5—not_present (denotes that the Calling Number |E is absent in the incoming
signaling message.

Direct Mapping None

Description Returns the DN field of call info. In an Ephone-initiated call, it carries the DN
tag of the calling party.

Syntax infotag get leg_dn_tag leglD

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns the DNISfield of Calllnfo.

Syntax infotag get leg_dnis[legl D]
If noleg ID is specified, thisinfo-tag returnsthe DNIS field of thefirst incoming
call leg. Not specifying aleg ID works only if thereis at least one incoming call
leg.
If aleg ID is specified, thisinfo-tag returns the DNIS field of that call leg. If the
call leg is not valid, the script terminates with error output.

Mode Read

Scope Global

Return Type String

Direct Mapping None

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

leg_display_info

Description Returns the display_info field of call info. In an Ephone-initiated call, this field
contains the name of the calling party.
Syntax infotag get leg_display_info leglD
Mode Read
Scope Global
Return Type String
Direct Mapping None
leg_guid
Description Returns the GUID o aleg.
Syntax infotag get leg_guid [legID]
If legID is not specified, returns the GUID of the first incoming leg.
Mode Read
Scope Global
Return Type String
Direct Mapping None
leg_incoming
Description Returns or maps to one or more incoming call legs.
Syntax infotag get leg_incoming
Mode Read
Scope Global
Return Type Number list
Direct Mapping Legs

leg_incoming_guid

Description Returns the incoming GUID of aleg.
Syntax infotag get leg_incoming_guid [legID]
If legID is not specified, returns the GUID of the first incoming leg.
Mode Read
Scope Global
Return Type String
Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

leg_inconnection

leg_isdid

leg_outgoing

Cisco I0S Version 12.3(2)T

Description Getsalist of legs that are part of this connection. The info-tag parameter maps
to just one connection.

Syntax infotag get inconnection {connlD | info-tag}

Mode Read

Scope Global

Return Type Number list

Direct Mapping Legs

Description Returns the DID field of Callinfo. ThisisaBoolean field (1 and 0) that reflects
the Final Destination flag of the call leg.

Syntax infotag get leg_isdid [legID]
If noleg ID is specified, thisinfo-tag returns the DID field of the first incoming
call leg. Not specifying aleg ID works only if thereis at |east one incoming call
leg.
If aleg ID is specified, thisinfo-tag returns the DID field of that call leg. If the
call leg isnot valid, the script terminates with error output.

Mode Read

Scope Global

Return Type Boolean (1 = true; 0 = false)

Direct Mapping None

Description Returns or maps to one or more outgoing call legs.

Syntax infotag get leg_outgoing

Mode Read

Scope Global

Return Type Number list

Direct Mapping Legs

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

leg_password

leg_rdn_pi

leg_rdn_si

Description If noleg ID is specified, this info-tag returns the password field of the first
incoming call leg. Not specifying aleg ID works only if thereis at least one
incoming call leg. If aleg ID is specified, thisinfo-tag returns the password field
of that call leg. If the call leg isnot valid, the script terminates with error output.

Syntax infotag get leg_password [leglD]

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Gets the redirect number presentation indication value.

Syntax infotag get leg_rdn_pi

Mode Read

Scope Global

Return Type Number list
Values retrieved could be one of the following:
1—presentation_allowed
2—presentation_restricted
3—number_lost_due_to_interworking
4—reserved_value
5—not_present (denotes that the Redirect Number IE is absent in the incoming
signaling message.

Direct Mapping None

Description Gets the redirect number screening indication value.

Syntax infotag get leg_rdn_si

Mode Read

Scope Global

Return Type Number list
Values retrieved could be one of the following:
1—usr_provided_unscreened
2—usr_provided_screening_passed
3—usr_provided_screening_failed
4—network_provided
5—not_present (denotes that the Redirect Number |E is absent in the incoming
signaling message.

Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

leg_redirect_cnt

Description Retrieves redirection count information from the first incoming call leg or for a
legif calid is specified.

Syntax infotag get leg_redirect_cnt

Mode Read

Scope Global

Return Type Number. Values retrieved between 0-7.

Direct Mapping None

leg_remoteipaddress

leg_rgn_noa

Cisco I0S Version 12.3(2)T

Description Returns the remote | P address of the endpoint from which the call is received. If
the IP address is not available, an empty string is returned.

Syntax infotag get leg_remoteipaddress <leg-id>

Mode Read

Scope Global

Return Type String (ip address)

Direct Mapping None

Description Gets the redirect number nature of address value.

Syntax infotag get leg_rgn_noa

Mode Read

Scope Global

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

Return Type Number
Values retrieved could be one of the following:

00—Unknown, number present

01—Unknown, number absent, presentation restricted
02—Unique subscriber number

03—Nonunique subscriber number

04—Unique national (significant) number

05—Nonunique national number

06—Unique international number

07—Nonunique international number

08—Network specific number

09—Nonsubscriber number

10—Subscriber number, operator requested

11—National number, operator requested

12—International number, operator requested

13—No number present, operator requested

14—No number present, cut through call to carrier
15—950+ call from local exchange carrier public station, hotel/motel or
non-exchange access end office

16—Test line test code

17—Unique 3 digit national number

18—Credit card

19—International inbound

20—National or international with carrier access code included
21—Cellular - global ID GSM

22—Cellular - global ID NWT 900

23—Cellular - global 1D autonet

24—Mobile (other)

25—Ported number

26—VNET

27—International operator to operator outside WZ1
28—International operator to operator inside WZ1
29—Operator requested - treated

30—Network routing number in national (significant) format
31—Network routing number in network specific format
32—Network routing number concatenated with called directory number
33—Screened for number portability

34—Abbreviated number

Direct Mapping None

N
Note Thisinfotag has been provided as an interim mechanism for accessing specific signaling information. It

may be obsoleted in afuture | OS rel ease when an alternate method of accessing thisinformation is made
available.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter4 Information Tags

leg_rgn_npi

Description

Returns the redirect number numbering plan indicator value.

Syntax

infotag get leg_rgn_npi

Mode

Read

Scope

Global

Return Type

Number

Values retrieved could be one of the following:
1—ISDN numbering plan

2—Data numbering plan

3—Telex numbering plan

4—Private numbering plan

5—National

6—Maritime mobile

7—Land mobile

8—ISDN mobile

252—Unknown

Direct Mapping

None

A

Note Thisinfotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in afuture |OS release when an alternate method of accessing thisinformation is made

available.
leg_rgn_num
Description Returns the redirect number address.
Syntax infotag get leg_rgn_num
Mode Read
Scope Global
Return Type String
Direct Mapping None
Y

Note Thisinfotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in afuture | OS release when an alternate method of accessing thisinformation is made

available.

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

leg_rgn_pi

Note

leg_rgn_si

Note

Description Returns the redirect number presentation indicator value.
Syntax infotag get leg_rgn_pi
Mode Read
Scope Global
Return Type Number
Values retrieved could be one of the following:
0—Unknown
1—Presentation allowed
2—Presentation not allowed
3—Address not available
Direct Mapping None

Thisinfotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in afuture | OS release when an alternate method of accessing thisinformation is made

available.
Description Returns the redirect number screening indicator value.
Syntax infotag get leg_rgn_si
Mode Read
Scope Global
Return Type Number
Values retrieved could be one of the following:
1—User provided not screened
2—User provided screening passed
3—User provided screening failed
4—Network provided
252—Unknown
Direct Mapping None

Thisinfotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in afuture |OS release when an alternate method of accessing thisinformation is made

available.

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

leg_settlement time

Description Returns the minimum of the OSP settlement time (in seconds) associated with the
list of specified legs.

Syntax infotag get leg_settlement_time {legl D | info-tag} [minimum]
If you specify minimum, this returns the minimum of the OSP settlement time of
the list of legs and the value of the AAA AV-pair creditTime. ThisAAA AV-pair
creditTime was returned by a previous aaa authorize command.
If all credit times are uninitialized, “uninitialized” is returned.
If all have unlimited time, or if oneisuninitialized and the others have unlimited
time, “unlimited” is returned.

Mode Read

Scope Global

Return Type Number

Direct Mapping None

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter 4

Information Tags |

leg_source carrier_id

Description Retrieve the source carrier 1D.
Syntax infotag get leg_source carrier_id
Mode Read

Scope Global

Return Type None

Direct Mapping None

leg_subscriber type

Description Returns the subscriber type.
Syntax infotag get leg_subscriber_type
Mode Read

Scope Global

Return Type None

Direct Mapping None

leg_suppress outgoing_auto_acct

Description When set, the service provider module does not automatically generate an
accounting packet on the outgoing call leg.

Syntax infotag get leg_suppress_outgoing_auto_acct
infotag set leg_suppress_outgoing_auto_acct

Mode Read/write

Scope Global

Return Type None for set
Boolean (0 | 1) for get

Direct Mapping Leg

leg_target_carrier_id

Description Set the target carrier ID.

Syntax infotag set leg_target_carrier_id
Mode Write

Scope Global

Return Type String

Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4

Information Tags

leg_type

Description If no legID is specified, this command returns the “type” of thefirst call leg.
Syntax infotag get leg_type [legl D]

Mode Read

Scope Global

Return Type String

Direct Mapping None

leg_username

Cisco I0S Version 12.3(2)T

Description If noleg ID is specified, thisinfo-tag returns the username field of the first
incoming call leg. Not specifying aleg ID works only if thereis at least one
incoming call leg. If aleg ID is specified, thisinfo-tag returns the usernamefield
of that call leg. If the call leg is not valid, the script terminates with error output.

Syntax infotag get leg_username [legl D]

Mode Read

Scope Global

Return Type String

Direct Mapping None

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide

Chapter4 Information Tags |

med_backup_server

Description

Returns or sets the backup server. Thisis applicable for RTSP-based prompts.

If the script attempts to play a prompt using a URL and the URL fails, it tries to
replay the URL from alist of backup servers by replacing the server portion of
the URL.

For example, if the script tries (but fails) to play a prompt from:
rtsp://www.cisco.com:5554/audiofil es/english/anounce.au

and the backup server 0 is configured as:

rtsp://www.real .com/cisco/

then the backup URL attempted is:

rtsp://www.real .com/cisco/audiofiles/english/anounce.au

A maximum of two (0 and 1) backup servers can be configured.

Thisinfo-tag applies only to streams on which you have not played any prompts
and istypically used in the one-time initialization section of the script.

Syntax

infotag get med_backup_server index
infotag set med_backup_server index server-URL

Mode

Read/Write

Scope

Global

Return Type

String

Direct Mapping

None

med_language

Description Returns or sets the current active language for media playout.
This info-tag returns the language index or the language prefix (depending on
whether prefix is specified) for the currently active language.

Syntax infotag get med_language [prefix]
infotag set med_language [index | prefix prefix]

Mode Read/Write

Scope Global

Return Type String/Number

Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter4 Information Tags

med_language _map

Description Returns or sets the mapping between the language index and the language prefix.

This info-tag returns the language index or the language prefix (depending on
whether prefix is specified) for the currently active language.

Syntax infotag get med_language map [index | prefix prefix]
infotag set med_language _map index prefix

Mode Read/Write

Scope Global

Return Type String/Number

Direct Mapping None

med_location

Description Returns or sets the language locations for all the languages the script uses. The
language prefix, category, and location are the same as those configurable from
the Cisco 10S command line interface (CLI).

Syntax infotag get med_location prefix category. Valid category values are 1, 2, 3, 4.

infotag set med_location prefix category location. Category 0 can be used to set
all 1-4 categories.

Mode Read/Write
Scope Global
Return Type String

Direct Mapping None

med_total languages

Description Returns the total number of languages configured.
Syntax infotag get med_total_|languages

Mode Read

Scope Global

Return Type Number

Direct Mapping None

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter4 Information Tags |

Sys_version

Description Returns the version of the Tcl IVR API.
Syntax infotag get sys version

Mode Read

Scope Global

Return Type String

Direct Mapping None

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

CHAPTER 5

Events and Status Codes

This chapter describes events received and status codes returned by Tcl 1VR scripts. This chapter
includes the following topics:

- Events, page 5-1
- Status Codes, page 5-4

Events

The following events can be received by the Tcl IVR script. Any events received that are not included
below are ignored.

Event Description
ev_address resolved List of endpoint addresses.
ev_alert An intermediate event generated by the leg setup or leg setup_continue

commands to set up acall. If specified in the callinfo parameter,
notifyEvents, the script receives an ev_alert message once the destination
endpoint is successfully alerted. The script running in the transferee
gateway could then disconnect the leg towards the transferring endpoint.

If this event is an intercepted event, the application needs to use the leg
setup_continue command to allow the system to continue with the setup.

ev_any_event A special wildcard event that can be used in the state machine to represent
any event that might be received by the script.

ev_authorize_done Confirms the completion of the aaa authorize command. You can use the
evt_status info-tag to determine the authorization status (whether it
succeeded or failed).

ev_authenticate_done Confirms the completion of the authentication command. You can use the
evt_status info-tag to determine the authentication status (whether it
succeeded or failed).

ev_call_timer0 Indicates that the call-level timer expired.

ev_collectdigits _done Confirmsthe completion of the leg collectdigits command on the call leg.
You can then use the evt_status info-tag to determine the status of the
command completion. You can usethe evt_dcdigitsinfo-tag to retrieve the
collected digits.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter5 Events and Status Codes

W Events

Event

Description

ev_connected

An intermediate event generated by the leg setup or leg setup_continue
commands to set up acall.

If the callinfo paramater, notifyEvents, is specified, the script receives an
ev_connected message when the system receives a connect event from the
destination switch.

If this event is an intercepted event, the application needs to use the leg

setup_continue command to allow the system to continue with the setup.

ev_consult_request

Indicates a call-transfer consultation-id request from an endpoint.

ev_consult_response

Indicates a response to the leg consult request command. For return
codes, see Consult Status under Status Codes.

ev_consultation_done

Indicated the completion of aleg consult response command. For return
codes, see Consult Response under Status Codes.

ev_create_done

Confirmsthe completion of the connection create command. You can use
the evt_connection info-tag to determine the ID of the completed
connection.

ev_destroy_done

Confirms the completion of the connection destroy command. You can
use the evt_connection info-tag to determine the ID of the connection that
was destroyed.

ev_digit_end

Indicates that adigit key ispressed and released. You can usethe evt_digit
info-tag to determine which digit was pressed. You can use the
evt_digit_duration info-tag to determine how long (in seconds) the digit
was pressed. This can be used to detect long pounds or long digits.

ev_disconnect_done

Indicates that the call leg has been cleared.

ev_disconnected

Indicates that one of the call legs needs to disconnect. On receiving this
event, the script must issue aleg disconnect on that call leg. You can use
the evt_legs info-tag to determine which call leg disconnected.

ev_disc_prog_ind

Indicates a DISC/PlI message is received at a call leg.

ev_facility

Indicates aresponse to aleg facility command.

ev_grab

Indicates that an application that called this script is requesting that the
script return the call leg. The script receiving this event can clean up and
return the leg with a handoff return command. Whether thisis doneis at
the discretion of the script receiving the ev_grab event.

ev_hookflash

Indicates a hook flash (such as a quick onhook-offhook in the middle of a
call), assuming that the underlying platform or interface supports hook
flash detection.

ev_handoff

Indicates that the script received one or more call legs from another
application. When the script receives this event, you can use the evt_legs
and the evt_connections info-tags to obtain alist of the call legs and
connection |1Ds that accompanied the ev_handoff event.

ev_leg_timer

Indicates that the leg timer expired. You can use the evt_legs info-tag to
determine which leg timer expired.

ev_media_done

Indicates that the prompt playout either completed or failed. You can use
the evt_status info-tag to determine the completion status.

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2

| Chapter5 Events and Status Codes

Events W

Event Description

ev_proceeding An intermediate event generated by the leg setup or leg setup_continue
commands to set up acall.

If the callinfo paramater, notifyEvents, is specified, the script receives an
ev_proceeding message when the system receives a proceeding event from
the remote end.

If this event is an intercepted event, the application needs to use the leg
setup_continue command to allow the system to continue with the setup.

ev_progress An intermediate event generated by the leg setup or leg setup_continue
commands to set up acall.

If the callinfo paramater, notifyEvents, is specified, the script receives an
ev_progress message when the system receives a progress event from the
destination switch.

If this event is an intercepted event, the application needs to use the leg
setup_continue command to allow the system to continue with the setup.

ev_returned Indicatesthat acall leg that was sent to another application (using handoff
callappl) has been returned. This event can be accompanied by one or
more call legs that were created by the called application. When the script
receives this event, you can use the evt_legs and the evt_connections
info-tags to obtain alist of the call legs and connection IDs that
accompanied theev_returned event. You can usetheevt_iscommand_done
info-tag to verify that all of the call legs sent have been accounted for,
meaning that the handoff callappl command is complete.

ev_setup_done Indicates that the leg setup command has finished. You can then use the
evt_status info-tag to determine the status of the command completion
(whether the call was successfully set up or failed for some reason).

ev_setup_indication Indicates that the system received a call. This event and the ev_handoff
event are the events that initiate an execution instance of a script.

ev_transfer_request Indicates a call transfer from an endpoint to the application.

ev_transfer_status An intermediate event generated by the leg setup command. If specified

in the callinfo parameter, notifyEvents, the script receives an
ev_trasfer_status message. The ev_status information tag would then
contain the status value of the call transfer.

ev_vxmldialog_done Received when the VXML dialog completes. This could be because of a
VXML dialog executing an <exit/> tag or interpretation completing the
current document without a transition to another document. The dialog
could also complete due to an interpretation failure or a document error.
This completion status is also available through the evt_status info-tag.

ev_vxmldialog_event Received by the Tcl IVR application when the VXML dialog initiated on
aleg executes a sendevent object tag. The VXML subevent nameis
available through the evt_vxmlevent info-tag. All events thrown from the
dialog markup are of the form vxml.dialog.*. All events generated by the
system—perhaps asan indirect reaction to the VXML document executing
acertain tag or throwing a certain event—Iike the dialog compl etion event
are of the form vxml.session.*.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 5

Events and Status Codes |

W Status Codes

Status Codes

Theevt_statusinfo-tag returns a status code for the event received. This sectionslists the possible status

codes and their meaning.

Status codes are grouped according to function. The first two characters of the status code indicate the

grouping.
- au—Authentication status
- ao—Authorization status
- cd—Digit collection status
» cr—Consult response
« cs—Consult status
» di— Disconnect cause
» fa—Facility
- ft—Feature type
e |Is—Leg setup status
 ms—Media status
- ts—Transfer status

» vd—Voice dialog completion status

Authentication Status

Authentication status is reported in au_xxx format:

Value for xxx

Description

000 Authorization was successful.
001 Authorization error.
002 Authorization failed.

Authorization Status

Authorization status is reported in ao_xxx format:

Value for xxx

Description

000 Authorization was successful.
001 Authorization error.
002 Authorization failed.

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter5 Events and Status Codes

Status Codes

Digit Collection Status

Digit collection status is reported in cd_xxx format:

Value for xxx |Description

001 The digit collection timed out, because no digits were pressed and not enough digits
were collected for a match.

002 The digit collection was aborted, because the user pressed an abort key.

003 Thedigit collection failed, because the buffer overflowed and not enough digitswere
collected for a match.

004 The digit collection succeeded with a match to the dial plan.

005 The digit collection succeeded with a match to one of the patterns.

006 The digit collection failed because the number collected was invalid.

007 The digit collection was terminated because an ev_disconnected event was received
on the call leg.

008 The digit collection was terminated because an ev_grab event was received on the
call leg.

009 The digit collection successfully turned on digit reporting to the script.

010 The digit collection was terminated because of an unsupported or unknown feature
or event.

Consult Response

Feature type is reported in cr_xxx format:

Value for xxx |Description
000 Success
001 Failed, invalid state
002 Failed, timeout
003 Failed, abandon
004 Failed, protocol error
Consult Status
Feature type is reported in cs_xxx format:
Value for xxx |Description
000 Consultation success, consult-id available
001 Consultation failed, request timeout
002 Consultation failed
003 Consultation failed, request rejected
004 Consultation failed, leg disconnected
005 Consultation failed, operation unsupported

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter 5

Events and Status Codes |

W Status Codes

Disconnect Cause
Disconnect causes use the format di_xxx where xxx is the Q931 cause code. Possible values are:
Value for xxx |Description
000 Uninitialized
001 Unassigned number
002 No route to the transit network
003 No route to the destination
004 Send information tone
005 Misdialed trunk prefix
006 Unacceptable channel
007 Call awarded
008 Preemption
009 Preemption reserved
016 Normal
017 Busy
018 No response from the user
019 No answer from the user
020 Subscriber is absent
021 Call rejected
022 Number has changed
026 Selected user is clearing
027 Destination is out of order
028 Invalid number
029 Facility rejected
030 Response to status inquiry
034 No circuit available
035 Requested VPCI VCI is not available
036 VPCI VCI assignment failure
037 Cell rate is not available
038 Network is out of order
039 Permanent frame mode is out of service
040 Permanent frame mode is operational
041 Temporary failure
042 Switch is congested
043 Access information has been discarded
044 No required circuit
045 No VPCI VCl isavailable
046 Precedence call blocked

Cisco I0S Version 12.3(2)T

[l Tcl IVR 2.0 Programming Guide

Doc Version 12.3.2 |

| Chapter5 Events and Status Codes

Status Codes

Value for xxx |Description

047 No resource available

048 DSP error

049 QoSisnot available

050 Facility is not subscribed

053 Outgoing calls barred

055 Incoming calls barred

057 Bearer capability is not authorized

058 Bearer capability is not available

062 Inconsistency in the information and class
063 Service or option not available

065 Bearer capability is not implemented

066 Change type is not implemented

069 Facility is not implemented

070 Restricted digital information only

079 Service is not implemented

081 Invalid call reference value

082 Channel does not exist

083 Call existsand call ID in use

084 Cdl ID inuse

085 No call suspended

086 Call cleared

087 User isnotin CUG

088 Incompatible destination

090 CUG does not exist

091 Invalid transit network

093 AAL parameters not supported

095 Invalid message

096 Mandatory information element (IE) is missing
097 M essage type is not implemented

098 Message type is not compatible

099 IE is not implemented

100 Invalid |E contents

101 Message in incomplete call state

102 Recovery on timer expiration

103 Nonimplemented parameter was passed on
110 Unrecognized parameter message discarded
111 Protocol error

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

Chapter5 Events and Status Codes |

W Status Codes

Value for xxx |Description

127 Internetworking error

128 Next node is unreachable

129 Holst Telephony Service Provider Module (HTSPM) is out of service
160 DTL transit is not my node ID

Facility

L eg setup requesting address resolution status is reported in fa_xxx format:

Value for xxx |Description

000 supplementary service request succeeded

003 supplementary service request unavailable

007 supplementary service was invoked in an invalid call state
009 supplementary service was invokes in a non-incoming call leg
010 supplementary service interaction is not allowed

050 MCID service is not subscribed

051 MCID request timed out

052 MCID is not configured for this interface

Feature Type

Feature type is reported in ft_xxx format:

Value for xxx |Description

001 Fax

002 Modem

003 Modem_phase

004 Hookflash

005 OnHook

006 OffHook
Leg Setup Status

Leg setup statusis reported in Is_xxx format:

Value for xxx |Description

000 The call is active or was successful.
001 The outgoing call leg was looped.
002 The call setup timed out (meaning that the destination phone was alerting, but no one

answered). The limit of this timeout can be specified in the leg setup command.

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter5 Events and Status Codes

Status Codes

Value for xxx

Description

003 The call setup failed because of alack of resourcesin the network.
004 The call setup failed because of an invalid number.

005 The call setup failed for reasons other than alack of resources or an invalid number.
006 Unused; setup failure.

007 The destination was busy.

008 The incoming side of the call disconnected.

009 The outgoing side of the call disconnected.

010 The conferencing or connecting of the two call legs failed.
011 Supplementary services internal failure

012 Supplementary services failure

013 Supplementary services failure. Inbound call leg was disconnected.
014 The call was handed off to another application.

015 The call setup was terminated by an application request.
016 The outgoing called number was blocked.

026 Leg redirected

031 Transfer request acknowledge

032 Transfer target alerting (future SIP use)

033 Transfer target trying (future SIP use)

040 Transfer success

041 Transfer success with transfer-to party connected (SIP only)
042 Transfer success unacknowledged (SIP only)

050 Transfer fail

051 Transfer failed, bad request (SIP only)

052 Transfer failed, destination busy

053 Transfer failed, request cancelled

054 Transfer failed, internal error

055 Transfer failed, not implemented (SIP only)

056 Transfer failed, service unavailable or unsupported

057 Transfer failed, leg disconnected

058 Transfer failed, multiple choices (SIP only)

059 Transfer failed, timeout; no response to transfer request

Cisco I0S Version 12.3(2)T

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide i

Chapter5 Events and Status Codes |

W Status Codes

Media Status

Media status is reported in ms_xyy format:

X indicates the command yy indicates the status of the command

Value for x | Description Value foryy |Description

0 Status for amedia play command. |00 The command was successful and

the prompt finished.!

1 Status for a media record 01 Failure
command.
Status for amedia stop command. |02 Unsupported feature or request
Status for amedia pause 03 Invalid host or URL specified
command.

4 Status for amedia resume 04 Received disconnected
command.

5 Status for amedia seek command |05 The prompt was interrupted by a
to forward. key press.

6 Status for amedia seek command
to rewind.

1. Valid for the media play command only, because media_done events are not received for successful completion of other
media commands.

Transfer Status

Transfer statusisreported in ts xxx format:

Value for xxx |Description

000 Generic transfer success

001 Transfer success, transfer-to party is alerting
002 Transfer success, transfer-to party is answered
003 Transfer finished; however, the result of the transfer is not guaranteed
004 Transfer request is accepted

005 Transferee is trying to reach transfer-to party
006 Transfer request is rejected by transferee

007 Invalid transfer number

008 Transfer-to party unreachable

009 Transfer-to party is busy

Tcl IVR 2.0 Programming Guide Cisco I0S Version 12.3(2)T
m. Doc Version 12.3.2 |

| Chapter5 Events and Status Codes

VoiceXML Dialog Completion Status

Cisco I0S Version 12.3(2)T

VoiceXML dialog completion status is reported in vd_xxx format:

Value for xxx

Description

000

Normal completion because of
the <exit> tag or execution
reaching the end of the
document.

001 Termination because of the
default VXML event handling
requiring VXML termination.

002 Terminated by the Tcl IVR
application.

003 Internal failure.

Status Codes

| Doc Version 12.3.2

Tcl IVR 2.0 Programming Guide i

Chapter5 Events and Status Codes |

W Status Codes

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

GLOSSARY

This chapter lists common terms and acronyms used throughout this document. For a more detailed list of internetworking
terms and acronyms, refer to the Internetworking and Acronyms web site at:

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ita/index.htm

A

AAA

ANI
API

AV-pair

B
GT_GlossTerm

GT_GlossTerm
which would wrap

C
CDR
CLI

connection

DID

DNIS

Cisco 10S Version 12.3(2)T

Authentication, authorization, and accounting. A suite of network security services that provides the
primary framework through which you can set up access control on your Cisco router or access server.

Automatic number identification. Same as calling party.
Application programming interface.

An attribute-value pair used in authentication.

GD_GlossDef. Begin the definition with a capital letter, and end the definition with a period.

GD_GlossDef. Begin the definition with a capital |etter, and end the definition with a period. Begin the
definition with a capital letter, and end the definition with a period.

Call datarecord.
Command line interface.

The tying together of two streams or call legs so that the incoming voice stream of one call leg is sent asthe
outgoing voice stream of the other call leg.

Direct inward dial. Callsin which the gateway uses the number that you initially dialed (DNIS) to make
the call, as opposed to prompting you to dial additional digits.

Dialed number information service.

| Doc Version12.3.2

Tcl IVR 2.0 Programming Guide i

M Glossary

DSP Digital signaling processor.
DTMF Dual tone multi-frequency. Use of two simultaneous voice-band tones for dialing (such as touch tone).
E

execution instance Aninstance of the TCL interpreter that is created to execute the script.

F

FSM Finite State Machine.

|

IE Information element.

IVR Interactive voice response. Term used to describe systems that provide information in the form of
recorded messages over telephone linesin responseto user input in the form of spoken words or, more
commonly, DTMF signaling. Examples include banks that allow you to check your balance from any
telephone and automated stock quote systems.

R

RADIUS Remote Authentication Dial-In User Service. A protocol used for access control, such as
authentication and authorization, or accounting.

RTSP Real Time Streaming Protocol. Enables the controlled delivery of real-time data, such as audio and
video. Sources of data can include both live data feeds, such as live audio and video, and stored
content, such as pre-recorded events. RTSP is designed to work with established protocols, such as
RTPand HTTP.

T

TCL Toolkit Command Language. A scripting language used for gateway products both internally and
externally to Cisco 10S software code.

TFTP Trivial File Transfer Protocol. Simplified version of FTP that allows files to be transferred from one

computer to another over a network, usually without the use of client authentication (for example,
username and password).

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

Glossary I

TLMI

TTS Real Time Streaming Protocol. Enables the controlled delivery of real-time data, such as audio and
video. Sources of data can include both live data feeds, such as live audio and video, and stored
content, such as pre-recorded events. RTSP is designed to work with established protocols, such as
RTPand HTTP.

U

URI Uniform Resource Identifier. Type of formatted identifier that encapsulates the name of an Internet
object, and labelsit with an identification of the name space, thus producing amember of the universal
set of names in registered name spaces and of addresses referring to registered protocols or name
spaces. [RFC 1630]

Vv

VoFR Voice over Frame Relay. VOFR enables arouter to carry voice traffic (for example, telephone calls and
faxes) over a Frame Relay network. When sending voice traffic over Frame Relay, the voicetrafficis
segmented and encapsulated for transit across the Frame Relay network using FRF.12 encapsul ation.

Vol P Voice over IP. The capability to carry normal telephony-style voice over an IP-based internet with

POT S-like functionality, reliability, and voice quality. Vol P enables arouter to carry voice traffic (for
example, telephone calls and faxes) over an | P network. In Vol P, the DSP segments the voice signal
into frames, which then are coupled in groups of two and stored in voice packets. These voice packets
are transported using 1P in compliance with ITU-T specification H.323.

Cisco I0S Version 12.3(2)T Tcl IVR 2.0 Programming Guide
[Doc Version 1232 .m

M Glossary

Tcl IVR 2.0 Programming Guide Cisco 10S Version 12.3(2)T
m. Doc Version 12.3.2 |

	Tcl IVR 2.0 Programming Guide
	Preface
	Reason for Change
	Feature History
	Audience
	Structure of This Guide
	Related Documents
	Conventions
	Obtaining Documentation
	World Wide Web
	Documentation CD-ROM
	Ordering Documentation
	Documentation Feedback

	Obtaining Technical Assistance
	Cisco.com
	Technical Assistance Center
	Cisco TAC Web Site
	Cisco TAC Escalation Center

	Overview
	IVR and Tcl
	Tcl IVR API Version 2.0
	Prerequisites
	Benefits
	Features Supported
	Developer Support

	Enhanced MultiLanguage Support
	VoiceXML and IVR Applications
	Call Handoff in Tcl
	Call Handoff in VXML
	Tcl/VXML Hybrid Applications
	Communication Between VXML and Tcl IVR 2.0 in Hybrid Applications.
	Hybrid Mode and VXML Call Control Tags

	SendEvent Object

	Tcl IVR Call Transfer Overview
	Call Transfer Terminology
	Built-in Call Transfer Support
	Supported Tcl IVR Call Transfer Script
	Call Transfer Scenarios
	One Gateway Scenario with Analog Transferor
	One Gateway Scenario with Cisco CME IP Phone Transferor
	Two Gateway Scenarios with Analog Transferor
	XOR and XTO on Gateway 1 and XEE on Gateway 2
	XOR and XEE on Gateway 1 and XTO on Gateway 2
	XOR on Gateway 1 and XEE and XTO on Gateway 2

	Two Gateway Scenarios with Cisco CME IP Phone Transferor
	XOR and XTO on Gateway 1 and XEE on Gateway 2
	XOR and XEE on Gateway 1 and XTO on Gateway 2
	XOR on Gateway 1 and XEE and XTO on Gateway 2

	Three Gateway Scenario with Analog Transferor
	Three Gateway Scenario with Cisco CME IP Phone Transferor

	Call Transfer Protocol Support
	Analog Hookflash and T1 CAS Release Link Trunk (RLT) Transfers
	ISDN Call Transfer
	SIP Call Transfer
	H.450 Call Transfer
	Cisco Call Manager Express Call Transfer

	Using Tcl IVR Scripts
	How Tcl IVR Version 2.0 Works
	Writing an IVR Script Using Tcl Extensions
	Prompts in Tcl IVR Scripts
	Sample Tcl IVR Script
	Initialization and Setup of State Machine

	Testing and Debugging Your Script
	Loading Your Script
	Associating Your Script with an Inbound Dial Peer
	Displaying Information About IVR Scripts
	Using URLs in IVR Scripts
	URLs for Loading the IVR Script
	URLs for Loading Audio Files

	Tips for Using Your Tcl IVR Script

	Tcl IVR API Command Reference
	Standard Tcl Commands Used in Tcl IVR Scripts
	Tcl IVR Commands At a Glance
	Tcl IVR Commands
	aaa accounting
	aaa authenticate
	aaa authorize
	call close
	clock
	command terminate
	connection create
	connection destroy
	fsm define
	fsm setstate
	handoff appl
	handoff callappl
	handoff return
	infotag get
	infotag set
	leg alert
	leg callerid
	leg collectdigits
	leg connect
	leg consult abandon
	leg consult response
	leg consult request
	leg disconnect
	leg disconnect_prog_ind
	leg facility
	leg proceeding
	leg progress
	leg setup
	leg setup_continue
	leg setupack
	leg transferdone
	leg vxmldialog
	leg vxmlsend
	log
	media pause
	media play
	media record
	media resume
	media seek
	media stop
	object create dial-peer
	object create gtd
	object destroy
	object append gtd
	object delete gtd
	object replace gtd
	object get gtd
	object get dial-peer
	playtone
	puts
	requiredversion
	set avsend
	set callinfo
	timer left
	timer start
	timer stop

	Information Tags
	aaa_avpair
	aaa_avpair_exists
	aaa_new_guid
	cfg_avpair
	cfg_avpair_exists
	con_all
	con_ofleg
	evt_address_resolve_reject_reason
	evt_address_resolve_term_cause
	evt_connections
	evt_consult_info
	evt_dcdigits
	evt_digit
	evt_digit_duration
	evt_endpoint_addresses
	evt_event
	evt_facility_id
	evt_facility_report
	evt_feature_report
	evt_feature_type
	evt_gtd
	evt_iscommand_done
	evt_handoff_string
	evt_last_disconnect_cause
	evt_last_event_handle
	evt_legs
	evt_progress_indication
	evt_redirect_info
	evt_service_control
	evt_service_control_count
	evt_status
	evt_transfer_info
	evt_vxmlevent
	evt_vxmlevent_params
	gtd_attr_exists
	last_command_handle
	leg_all
	leg_ani
	leg_ani_pi
	leg_ani_si
	leg_dn_tag
	leg_dnis
	leg_display_info
	leg_guid
	leg_incoming
	leg_incoming_guid
	leg_inconnection
	leg_isdid
	leg_outgoing
	leg_password
	leg_rdn_pi
	leg_rdn_si
	leg_redirect_cnt
	leg_remoteipaddress
	leg_rgn_noa
	leg_rgn_npi
	leg_rgn_num
	leg_rgn_pi
	leg_rgn_si
	leg_settlement_time
	leg_source_carrier_id
	leg_subscriber_type

	leg_suppress_outgoing_auto_acct
	leg_target_carrier_id

	leg_type
	leg_username
	med_backup_server
	med_language
	med_language_map
	med_location
	med_total_languages
	sys_version

	Events and Status Codes
	Events
	Status Codes
	Authentication Status
	Authorization Status
	Digit Collection Status
	Consult Response
	Consult Status
	Disconnect Cause
	Facility
	Feature Type
	Leg Setup Status
	Media Status
	Transfer Status
	VoiceXML Dialog Completion Status

	Glossary

